File size: 7,753 Bytes
26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Multilingual Translation
[[Multilingual Translation with Extensible Multilingual Pretraining and Finetuning, https://arxiv.org/abs/2008.00401]](https://arxiv.org/abs/2008.00401)
## Introduction
This work is for training multilingual translation models with multiple bitext datasets. This multilingual translation framework supports (see [[training section]](#Training) and [[finetuning section]](#Finetuning) for examples)
* temperature based sampling over unbalancing datasets of different translation directions
- --sampling-method' with
choices=['uniform', 'temperature', 'concat']
- --sampling-temperature
* configurable to automatically add source and/or target language tokens to source/target sentences using data which are prepared in the same way as bilignual training
- --encoder-langtok with choices=['src', 'tgt', None] to specify whether to add source or target language tokens to the source sentences
- --decoder-langtok (binary option) to specify whether to add target language tokens to the target sentences or not
* finetuning mBART pretrained models for multilingual translation
- --finetune-from-model to specify the path from which to load the pretrained model
## Preprocessing data
Multilingual training requires a joint BPE vocab. Please follow [mBART's preprocessing steps](https://github.com/pytorch/fairseq/tree/main/examples/mbart#bpe-data) to reuse our pretrained sentence-piece model.
You can also train a joint BPE model on your own dataset and then follow the steps in [[link]](https://github.com/pytorch/fairseq/tree/main/examples/translation#multilingual-translation).
## Training
```bash
lang_pairs=<language pairs to be trained, e.g. "en-cs,cs-en">
path_2_data=<set to data path>
lang_list=<a file which contains a list of languages separated by new lines>
fairseq-train $path_2_data \
--encoder-normalize-before --decoder-normalize-before \
--arch transformer --layernorm-embedding \
--task translation_multi_simple_epoch \
--sampling-method "temperature" \
--sampling-temperature 1.5 \
--encoder-langtok "src" \
--decoder-langtok \
--lang-dict "$lang_list" \
--lang-pairs "$lang_pairs" \
--criterion label_smoothed_cross_entropy --label-smoothing 0.2 \
--optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
--lr-scheduler inverse_sqrt --lr 3e-05 --warmup-updates 2500 --max-update 40000 \
--dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \
--max-tokens 1024 --update-freq 2 \
--save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \
--seed 222 --log-format simple --log-interval 2
```
## Finetuning
We can also finetune multilingual models from a monolingual pretrained models, e.g. [mMBART](https://github.com/pytorch/fairseq/tree/main/examples/mbart).
```bash
lang_pairs=<language pairs to be trained, e.g. "en-cs,cs-en">
path_2_data=<set to data path>
lang_list=<a file which contains a list of languages separated by new lines>
pretrained_model=<path to the pretrained model, e.g. mbart or another trained multilingual model>
fairseq-train $path_2_data \
--finetune-from-model $pretrained_model \
--encoder-normalize-before --decoder-normalize-before \
--arch transformer --layernorm-embedding \
--task translation_multi_simple_epoch \
--sampling-method "temperature" \
--sampling-temperature 1.5 \
--encoder-langtok "src" \
--decoder-langtok \
--lang-dict "$lang_list" \
--lang-pairs "$lang_pairs" \
--criterion label_smoothed_cross_entropy --label-smoothing 0.2 \
--optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
--lr-scheduler inverse_sqrt --lr 3e-05 --warmup-updates 2500 --max-update 40000 \
--dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \
--max-tokens 1024 --update-freq 2 \
--save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \
--seed 222 --log-format simple --log-interval 2
```
## Generate
The following command uses the multilingual task (translation_multi_simple_epoch) to generate translation from $source_lang to $target_lang on the test dataset. During generaton, the source language tokens are added to source sentences and the target language tokens are added as the starting token to decode target sentences. Options --lang-dict and --lang-pairs are needed to tell the generation process the ordered list of languages and translation directions that the trained model are awared of; they will need to be consistent with the training.
```bash
model=<multilingual model>
source_lang=<source language>
target_lang=<target language>
fairseq-generate $path_2_data \
--path $model \
--task translation_multi_simple_epoch \
--gen-subset test \
--source-lang $source_lang \
--target-lang $target_lang
--sacrebleu --remove-bpe 'sentencepiece'\
--batch-size 32 \
--encoder-langtok "src" \
--decoder-langtok \
--lang-dict "$lang_list" \
--lang-pairs "$lang_pairs" > ${source_lang}_${target_lang}.txt
```
Fairseq will generate translation into a file {source_lang}_${target_lang}.txt with sacreblue at the end.
You can also use costomized tokenizer to compare the performance with the literature. For example, you get a tokenizer [here](https://github.com/rsennrich/wmt16-scripts) and do the following:
```bash
TOKENIZER=<path to a customized tokenizer for decoding evaluation>
TOK_CMD=<"$TOKENIZER $target_lang" or cat for sacrebleu>
cat {source_lang}_${target_lang}.txt | grep -P "^H" |sort -V |cut -f 3- |$TOK_CMD > ${source_lang}_${target_lang}.hyp
cat {source_lang}_${target_lang}.txt | grep -P "^T" |sort -V |cut -f 2- |$TOK_CMD > ${source_lang}_${target_lang}.ref
sacrebleu -tok 'none' -s 'none' ${source_lang}_${target_lang}.ref < ${source_lang}_${target_lang}.hyp
```
# mBART50 models
* [mMBART 50 pretrained model](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.pretrained.tar.gz).
* [mMBART 50 finetuned many-to-one](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.n1.tar.gz).
* [mMBART 50 finetuned one-to-many](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.1n.tar.gz).
* [mMBART 50 finetuned many-to-many](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.nn.tar.gz).
Please download and extract from the above tarballs. Each tarball contains
* The fairseq model checkpoint: model.pt
* The list of supported languages: ML50_langs.txt
* Sentence piece model: sentence.bpe.model
* Fairseq dictionary of each language: dict.{lang}.txt (please replace lang with a language specified in ML50_langs.txt)
To use the trained models,
* use the tool [binarize.py](./data_scripts/binarize.py) to binarize your data using sentence.bpe.model and dict.{lang}.txt, and copy the dictionaries to your data path
* then run the generation command:
```bash
path_2_data=<path to your binarized data with fairseq dictionaries>
model=<path_to_extracted_folder>/model.pt
lang_list=<path_to_extracted_folder>/ML50_langs.txt
source_lang=<source language>
target_lang=<target language>
fairseq-generate $path_2_data \
--path $model \
--task translation_multi_simple_epoch \
--gen-subset test \
--source-lang $source_lang \
--target-lang $target_lang
--sacrebleu --remove-bpe 'sentencepiece'\
--batch-size 32 \
--encoder-langtok "src" \
--decoder-langtok \
--lang-dict "$lang_list"
```
## Citation
```bibtex
@article{tang2020multilingual,
title={Multilingual Translation with Extensible Multilingual Pretraining and Finetuning},
author={Yuqing Tang and Chau Tran and Xian Li and Peng-Jen Chen and Naman Goyal and Vishrav Chaudhary and Jiatao Gu and Angela Fan},
year={2020},
eprint={2008.00401},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|