File size: 15,435 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

from dataclasses import dataclass, field
import logging
import math
import os
from typing import Optional
import torch

from fairseq.logging import metrics
from fairseq.tasks import FairseqTask, register_task
from ..data import ExtractedFeaturesDataset, RandomInputDataset

from fairseq.data import (
    Dictionary,
    data_utils,
    StripTokenDataset,
)
from fairseq.dataclass import FairseqDataclass
from fairseq.distributed.utils import get_data_parallel_world_size
from omegaconf import MISSING

from examples.speech_recognition.kaldi.kaldi_decoder import (
    KaldiDecoder,
    KaldiDecoderConfig,
)


logger = logging.getLogger(__name__)


@dataclass
class DecodingConfig(FairseqDataclass):
    kenlm_path: Optional[str] = None
    lm_weight: float = 0
    blank_weight: float = 0


@dataclass
class UnpairedAudioTextConfig(FairseqDataclass):
    data: str = field(
        default=MISSING, metadata={"help": "path to data directory containing audio"}
    )
    text_data: str = field(
        default=MISSING, metadata={"help": "path to data directory containing text"}
    )
    max_length: Optional[int] = None
    labels: Optional[str] = field(
        default=None,
        metadata={"help": "extension of the label file to load, used for fine-tuning"},
    )
    unfiltered: bool = field(
        default=False, metadata={"help": "load data with _unfiltered suffix"}
    )
    ctc_eval: bool = field(
        default=False, metadata={"help": "eval UER as if computed by CTC"}
    )
    sort_by_length: bool = field(
        default=True, metadata={"help": "sort examples by length of audio timesteps"}
    )
    shuffle: bool = field(default=True, metadata={"help": "shuffle examples"})
    append_eos: bool = field(default=False, metadata={"help": "append eos"})
    uppercase: Optional[bool] = field(
        default=False, metadata={"help": "uppercase for LM score computation"}
    )
    skipwords: Optional[str] = field(
        default="",
        metadata={
            "help": "comma-separated words to be removed for LM score computation"
        },
    )
    kenlm_path: Optional[str] = None
    vocab_usage_power: float = 2

    word_decoder_config: Optional[KaldiDecoderConfig] = None
    word_kenlm_path: Optional[str] = None

    decoding_config: DecodingConfig = DecodingConfig()


@register_task("unpaired_audio_text", dataclass=UnpairedAudioTextConfig)
class UnpairedAudioText(FairseqTask):
    """ """

    cfg: UnpairedAudioTextConfig

    def __init__(
        self,
        cfg: UnpairedAudioTextConfig,
        source_dictionary=None,
        target_dictionary=None,
    ):
        super().__init__(cfg)

        self._target_dictionary = target_dictionary
        self._source_dictionary = source_dictionary
        self.num_symbols = (
            len([s for s in target_dictionary.symbols if not s.startswith("madeup")])
            - target_dictionary.nspecial
        )
        self.sil_id = (
            target_dictionary.index("<SIL>") if "<SIL>" in target_dictionary else -1
        )
        self.kenlm = None
        if cfg.kenlm_path is not None:
            import kenlm

            self.kenlm = kenlm.Model(cfg.kenlm_path)

        self.word_kenlm = None
        if cfg.word_kenlm_path is not None:
            import kenlm

            self.word_kenlm = kenlm.Model(cfg.word_kenlm_path)

        self.uppercase = cfg.uppercase
        self.skipwords = set(cfg.skipwords.split(","))

        def str_postprocess(s):
            s = " ".join(w for w in s.split() if w not in self.skipwords)
            s = s.upper() if self.uppercase else s
            return s

        self.str_postprocess = str_postprocess
        self.compute_lm_score = lambda s: self.kenlm.score(self.str_postprocess(s))

        self.compute_word_score = None
        if cfg.word_decoder_config is not None:
            self.kaldi_decoder = KaldiDecoder(cfg.word_decoder_config, beam=10)

            def compute_word_score(logits, padding):
                res = self.kaldi_decoder.decode(logits, padding)
                for r in res:
                    r = r.result()
                    assert len(r) == 1
                    r = r[0]
                    yield r["score"], r["words"]

            self.compute_word_score = compute_word_score

    @classmethod
    def setup_task(cls, cfg: UnpairedAudioTextConfig, **kwargs):
        """Setup the task (e.g., load dictionaries).

        Args:
            cfg (AudioPretrainingConfig): configuration of this task
        """

        dict_path = os.path.join(cfg.text_data, "dict.txt")
        if os.path.exists(dict_path):
            target_dictionary = Dictionary.load(dict_path)
        else:
            dict_path = os.path.join(cfg.data, f"dict.{cfg.labels}.txt")
            target_dictionary = Dictionary.load(dict_path)

        return cls(cfg, target_dictionary=target_dictionary)

    def optimizer_step(self, optimizer, model, update_num):
        if hasattr(model, "get_groups_for_update"):
            groups = model.get_groups_for_update(update_num)
            optimizer.step(groups={groups})
        else:
            optimizer.step()

    def valid_step(self, sample, model, criterion):
        res = model(
            **sample["net_input"],
            dense_x_only=True,
        )

        dense_x = res["logits"]
        padding_mask = res["padding_mask"]

        word_scores = None
        if self.compute_word_score is not None:
            word_scores = self.compute_word_score(dense_x.cpu(), padding_mask.cpu())

        z = dense_x.argmax(-1)
        z[padding_mask] = self.target_dictionary.pad()

        vocab_seen = torch.zeros(self.num_symbols, dtype=torch.bool)

        import editdistance

        c_err = 0
        c_len = 0
        pred_c_len = 0
        lm_score_sum = 0
        for i, (x, t, id) in enumerate(
            zip(
                z,
                sample["target"] if "target" in sample else [None] * len(z),
                sample["id"],
            )
        ):

            if t is not None:
                t = t[(t >= self.target_dictionary.nspecial)]
            x = x[
                (x >= self.target_dictionary.nspecial)
                & (x < (self.num_symbols + self.target_dictionary.nspecial))
            ]
            if self.sil_id >= 0:
                x = x[x != self.sil_id]

            vocab_seen[x - self.target_dictionary.nspecial] = True

            pred_units_arr = x
            if self.cfg.ctc_eval:
                pred_units_arr = pred_units_arr.unique_consecutive()
                pred_units_arr = pred_units_arr[pred_units_arr != 0]

            if id == 0:
                if t is not None:
                    logger.info(f"REF: {self.target_dictionary.string(t)}")
                logger.info(f"HYP: {self.target_dictionary.string(pred_units_arr)}")

                if self.kenlm is not None:
                    if t is not None:
                        ref_lm_s = self.compute_lm_score(
                            self.target_dictionary.string(t)
                        )
                        logger.info(
                            f"LM [REF]: {ref_lm_s}, {math.pow(10, -ref_lm_s / (len(t) + 1))}"
                        )

                    hyp_lm_s = self.compute_lm_score(
                        self.target_dictionary.string(pred_units_arr)
                    )
                    logger.info(
                        f"LM [HYP]: {hyp_lm_s}, {math.pow(10, -hyp_lm_s / (len(pred_units_arr) + 1))}"
                    )

            pred_units_arr = pred_units_arr.tolist()

            pred_c_len += len(pred_units_arr)

            if t is not None:
                t = t.tolist()
                c_err += editdistance.eval(pred_units_arr, t)
                c_len += len(t)
            else:
                c_len = pred_c_len

            if self.kenlm is not None:
                pred_str = self.target_dictionary.string(pred_units_arr)
                lm_score = self.compute_lm_score(pred_str)
                lm_score_sum += lm_score

        kaldi_score_sum = 0
        word_lm_sum = 0
        num_words = 0
        if word_scores is not None:
            for score, words in word_scores:
                kaldi_score_sum += score
                num_words += len(words)
                if self.word_kenlm is not None:
                    word_lm_sum += self.kenlm.score(" ".join(words))

        try:
            world_size = get_data_parallel_world_size()
        except:
            world_size = 1

        logging_output = {
            "loss": c_err,
            "_num_char_errors": c_err,
            "_num_chars": c_len,
            "_num_pred_chars": pred_c_len,
            "ntokens": c_len,
            "nsentences": z.size(0),
            "sample_size": c_len,
            "_world_size": world_size,
            "_lm_score_sum": lm_score_sum,
            "_kaldi_score_sum": kaldi_score_sum,
            "_word_lm_sum": word_lm_sum,
            "_num_words": num_words,
            "_vocab_seen": vocab_seen,
        }

        return c_err, c_len, logging_output

    def load_dataset(self, split: str, task_cfg: FairseqDataclass = None, **kwargs):
        data_path = self.cfg.data
        task_cfg = task_cfg or self.cfg

        has_unpaired_text = os.path.exists(
            os.path.join(self.cfg.text_data, f"{split}.idx")
        )

        self.datasets[split] = ExtractedFeaturesDataset(
            path=data_path,
            split=split,
            min_length=3,
            max_length=task_cfg.max_length,
            labels=None if has_unpaired_text else task_cfg.labels,
            label_dict=self.target_dictionary,
            shuffle=getattr(task_cfg, "shuffle", True),
            sort_by_length=task_cfg.sort_by_length,
        )

        logger.info(f"split {split} has unpaired text? {has_unpaired_text}")
        if has_unpaired_text:
            text_dataset = data_utils.load_indexed_dataset(
                os.path.join(self.cfg.text_data, split), self.target_dictionary
            )
            text_dataset = StripTokenDataset(text_dataset, self.target_dictionary.eos())
            self.datasets[split] = RandomInputDataset(
                self.datasets[split],
                text_dataset,
                ["random_label"],
                add_to_input=True,
                pad_idx=self.target_dictionary.pad(),
            )

    @property
    def source_dictionary(self):
        return self._source_dictionary

    @property
    def target_dictionary(self):
        """Return the :class:`~fairseq.data.Dictionary` for the language
        model."""
        return self._target_dictionary

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        return None

    def reduce_metrics(self, logging_outputs, criterion):
        super().reduce_metrics(logging_outputs, criterion)

        zero = torch.scalar_tensor(0.0)
        num_char_errors = sum(
            log.get("_num_char_errors", zero) for log in logging_outputs
        )
        num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs)
        num_word_errors = sum(
            log.get("_num_word_errors", zero) for log in logging_outputs
        )
        num_words = sum(log.get("_num_words", zero) for log in logging_outputs)
        num_pred_chars = sum(
            log.get("_num_pred_chars", zero) for log in logging_outputs
        )

        lm_score_sum = sum(log.get("_lm_score_sum", zero) for log in logging_outputs)
        vocab_seen = (
            sum(log.get("_vocab_seen", zero) for log in logging_outputs)
            .bool()
            .sum()
            .item()
        )
        kaldi_score_sum = sum(
            log.get("_kaldi_score_sum", zero) for log in logging_outputs
        )
        word_lm_sum = sum(log.get("_word_lm_sum", zero) for log in logging_outputs)

        metrics.log_scalar_sum("_num_char_errors", num_char_errors)
        metrics.log_scalar_sum("_num_chars", num_chars)
        metrics.log_scalar_sum("_num_word_errors", num_word_errors)
        metrics.log_scalar_sum("_num_words", num_words)

        metrics.log_scalar_sum("lm_score_sum", lm_score_sum)
        metrics.log_scalar_sum("num_pred_chars", num_pred_chars)

        if self.cfg.word_kenlm_path is not None:
            metrics.log_scalar_sum("kaldi_score_sum", kaldi_score_sum)
            metrics.log_scalar_sum("word_lm_sum", word_lm_sum)

        if num_chars > 0:
            metrics.log_derived(
                "uer",
                lambda meters: meters["_num_char_errors"].sum
                * 100.0
                / meters["_num_chars"].sum
                if meters["_num_chars"].sum > 0
                else float("nan"),
            )

            if lm_score_sum < 0 and vocab_seen > 0:
                metrics.log_scalar("vocab_seen_pct", vocab_seen / self.num_symbols)

                metrics.log_derived(
                    "weighted_lm_ppl",
                    lambda meters: math.pow(
                        10,
                        -meters["lm_score_sum"].sum
                        / (
                            meters["num_pred_chars"].sum + meters["nsentences"].sum
                        ),  # account for </s>
                    )
                    / meters["vocab_seen_pct"].avg ** self.cfg.vocab_usage_power,
                )

                metrics.log_derived(
                    "lm_ppl",
                    lambda meters: math.pow(
                        10,
                        -meters["lm_score_sum"].sum
                        / (
                            meters["num_pred_chars"].sum + meters["nsentences"].sum
                        ),  # account for </s>
                    ),
                )
            else:
                metrics.log_derived("weighted_lm_ppl", lambda meters: float("inf"))

        if num_words > 0:
            if word_lm_sum != 0:
                metrics.log_derived(
                    "word_lm_ppl",
                    lambda meters: math.pow(
                        10,
                        -meters["word_lm_sum"].sum
                        / (
                            meters["_num_words"].sum + meters["nsentences"].sum
                        ),  # account for </s>
                    ),
                )
                metrics.log_derived(
                    "weighted_word_lm_ppl",
                    lambda meters: math.pow(
                        10,
                        -meters["word_lm_sum"].sum
                        / (
                            meters["_num_words"].sum + meters["nsentences"].sum
                        ),  # account for </s>
                    )
                    / meters["vocab_seen_pct"].avg ** self.cfg.vocab_usage_power,
                )

            if self.cfg.word_kenlm_path is not None:
                metrics.log_derived(
                    "kaldi_score",
                    lambda meters: meters["kaldi_score_sum"].sum
                    / meters["nsentences"].sum,
                )

    def build_model(self, cfg: FairseqDataclass):
        model = super().build_model(cfg)

        return model