File size: 5,231 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

# Number of GPUs per GPU worker
export GPUS_PER_NODE=8
# Number of GPU workers, for single-worker training, please set to 1
export NUM_NODES=$SLURM_NNODES
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr

# The port for communication
export MASTER_PORT=12350
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=$SLURM_NODEID

echo "MASTER_ADDR: $MASTER_ADDR"
echo "RANK :$RANK"
echo "NUM_NODES :$NUM_NODES"
echo "GPUS_PER_NODE :$GPUS_PER_NODE"

export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/

echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH"

num_workers=0


ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival

base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data

base_log_dir=/work/NAT/gda2204/mshukor/logs



exp_name=unival_s2

save_dir=${base_log_dir}/ofa/checkpoints/pretrain/${exp_name}

bpe_dir=${ofa_dir}/utils/BPE
user_dir=${ofa_dir}/ofa_module

restore_file=${base_log_dir}/ofa/checkpoints/pretrain/${exp_name}/checkpoint_last.pt


lr=1e-4



image_dir=${base_data_dir}
data_dir=${base_data_dir}/ofa/pretrain_ours

mkdir -p $save_dir


neg_sample_dir=${data_dir}/negative_sample
data=${data_dir}/vision_language_mini_vqa_ground.tsv    #vision_language_mini_webvid2m.tsv
text_data= #${data_dir}/text_mini.tsv
image_data= #${data_dir}/image_mini.tsv
detection_data= #${data_dir}/detection_mini.tsv
video_data=${data_dir}/video_mini_webvid2mccapqa.tsv #${data_dir}/video_mini_webvid2m.tsv #video data
video_cnt=1



selected_cols=0,1,2,3,4,5,6,7
text_selected_cols=0,1
image_selected_cols=0,1,2
detection_selected_cols=0,1,2
video_selected_cols=0,1,2,3,4,5,6,7

task=unify_task
arch=unival_base
criterion=adjust_label_smoothed_cross_entropy
label_smoothing=0.0

max_epoch=50
warmup_ratio=0.01
batch_size=4 # will be multiplied by 2 for one .tsv, e.g. with video_data= 16 x2 
update_freq=2
resnet_drop_path_rate=0.0
encoder_drop_path_rate=0.1
decoder_drop_path_rate=0.1
dropout=0.1
attention_dropout=0.0
max_src_length=80
max_tgt_length=30
num_bins=1000
orig_patch_image_size=224
max_image_size=512


###
image_encoder_name=timm_resnet #vit_base_patch16_224
patch_image_size=384
resnet_type=resnet101

resnet_model_path=${base_log_dir}/pretrained_models/resnet101_a1h-36d3f2aa.pth

# video
video_encoder_name=all_resnext101
patch_frame_size=224
video_model_path=${base_log_dir}/pretrained_models/3dcnn/resnext-101-kinetics.pth #${base_log_dir}/pretrained_models/TimeSformer_divST_8x32_224_K600.pyth
num_frames=8

sample_patch_num=144 

save_interval_updates=0



python3 -m torch.distributed.launch \
--nnodes=${NUM_NODES} \
--nproc_per_node=${GPUS_PER_NODE} \
--master_port=${MASTER_PORT} \
--node_rank=${RANK} \
--master_addr=${MASTER_ADDR} \
--use_env ${ofa_dir}/train.py \
  $data \
  --ddp-backend=no_c10d \
  --selected-cols=${selected_cols} \
  --text-selected-cols=${text_selected_cols} \
  --image-selected-cols=${image_selected_cols} \
  --detection-selected-cols=${detection_selected_cols} \
  --bpe-dir=${bpe_dir} \
  --user-dir=${user_dir} \
  --save-dir=${save_dir} \
  --neg-sample-dir=${neg_sample_dir} \
  --task=${task} \
  --arch=${arch} \
  --criterion=${criterion} \
  --label-smoothing=${label_smoothing} \
  --batch-size=${batch_size} \
  --update-freq=${update_freq} \
  --encoder-normalize-before \
  --decoder-normalize-before \
  --share-decoder-input-output-embed \
  --share-all-embeddings \
  --layernorm-embedding \
  --patch-layernorm-embedding \
  --code-layernorm-embedding \
  --resnet-drop-path-rate=${resnet_drop_path_rate} \
  --encoder-drop-path-rate=${encoder_drop_path_rate} \
  --decoder-drop-path-rate=${decoder_drop_path_rate} \
  --dropout=${dropout} \
  --attention-dropout=${attention_dropout} \
  --weight-decay=0.01 --optimizer=adam --adam-betas="(0.9,0.999)" --adam-eps=1e-08 --clip-norm=5.0 \
  --lr-scheduler=polynomial_decay --lr=${lr} \
  --max-epoch=${max_epoch} --warmup-ratio=${warmup_ratio} \
  --log-format=simple --log-interval=10 \
  --fixed-validation-seed=7 \
  --keep-last-epochs=15 \
  --save-interval=1 \
  --save-interval-updates=${save_interval_updates} \
  --disable-validation \
  --max-src-length=${max_src_length} \
  --max-tgt-length=${max_tgt_length} \
  --add-type-embedding \
  --scale-attn \
  --scale-fc \
  --scale-heads \
  --disable-entangle \
  --num-bins=${num_bins} \
  --patch-image-size=${patch_image_size} \
  --sample-patch-num=${sample_patch_num} \
  --max-image-size=${max_image_size} \
  --fp16 \
  --fp16-scale-window=128 \
  --num-workers=${num_workers} \
  --read-from-img-path \
  --image-dir=${image_dir} \
  --restore-file=${restore_file} \
  --image-encoder-name=${image_encoder_name} \
  --video-encoder-name=${video_encoder_name} \
  --video-model-path=${video_model_path} \
  --patch-frame-size=${patch_frame_size} \
  --save-on-cuda \
  --num-frames=${num_frames} \
  --resnet-type=${resnet_type} \
  --resnet-model-path=${resnet_model_path} \
  --video-selected-cols=${video_selected_cols} \
  --video-data=${video_data} \
  --video-cnt=${video_cnt}