File size: 13,456 Bytes
26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
from dataclasses import dataclass, field
import logging
import os
import math
import torch
from typing import Dict, Optional
from fairseq import search
from fairseq.data import FairseqDataset, iterators
from fairseq.optim.amp_optimizer import AMPOptimizer
from fairseq.dataclass import FairseqDataclass
from fairseq.tasks import FairseqTask, register_task
from omegaconf import DictConfig
logger = logging.getLogger(__name__)
@dataclass
class OFAConfig(FairseqDataclass):
data: Optional[str] = field(
default=None,
metadata={
"help": "comma separated path to data list, will be iterated upon during epochs "
"in round-robin manner; valid data are always in the last"
},
)
selected_cols: Optional[str] = field(
default=None,
metadata={"help": "selected cols"},
)
bpe: Optional[str] = field(
default='gpt2',
metadata={"help": "which bpe to use"},
)
bpe_dir: Optional[str] = field(
default=None,
metadata={"help": "bpe dir"},
)
max_source_positions: int = field(
default=1024, metadata={"help": "max number of tokens in the source sequence"}
)
max_target_positions: int = field(
default=1024, metadata={"help": "max number of tokens in the target sequence"}
)
max_src_length: int = field(
default=128, metadata={"help": "the maximum src sequence length"}
)
max_tgt_length: int = field(
default=30, metadata={"help": "the maximum target sequence length"}
)
code_dict_size: int = field(
default=8192, metadata={"help": "code dict size"}
)
patch_image_size: int = field(
default=480, metadata={"help": "patch image size"}
)
orig_patch_image_size: int = field(
default=256, metadata={"help": "patch image size"}
)
num_bins: int = field(
default=1000, metadata={"help": "number of quantization bins"}
)
imagenet_default_mean_and_std: bool = field(
default=False,
metadata={"help": "imagenet normalize"},
)
constraint_range: Optional[str] = field(
default=None,
metadata={"help": "constraint range"}
)
@register_task("ofa", dataclass=OFAConfig)
class OFATask(FairseqTask):
def __init__(self, cfg: OFAConfig, src_dict, tgt_dict):
super().__init__(cfg)
self.src_dict = src_dict
self.tgt_dict = tgt_dict
@classmethod
def setup_task(cls, cfg: DictConfig, **kwargs):
"""Setup the task."""
# load dictionaries
src_dict = cls.load_dictionary(
os.path.join(cfg.bpe_dir, "dict.txt")
)
tgt_dict = cls.load_dictionary(
os.path.join(cfg.bpe_dir, "dict.txt")
)
src_dict.add_symbol("<mask>")
tgt_dict.add_symbol("<mask>")
for i in range(cfg.code_dict_size):
src_dict.add_symbol("<code_{}>".format(i))
tgt_dict.add_symbol("<code_{}>".format(i))
# quantization
for i in range(cfg.num_bins):
src_dict.add_symbol("<bin_{}>".format(i))
tgt_dict.add_symbol("<bin_{}>".format(i))
logger.info("source dictionary: {} types".format(len(src_dict)))
logger.info("target dictionary: {} types".format(len(tgt_dict)))
return cls(cfg, src_dict, tgt_dict)
def get_batch_iterator(
self,
dataset,
max_tokens=None,
max_sentences=None,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=1,
data_buffer_size=0,
disable_iterator_cache=False,
):
assert isinstance(dataset, FairseqDataset)
# initialize the dataset with the correct starting epoch
dataset.set_epoch(epoch)
# create mini-batches with given size constraints
batch_sampler = [
[j for j in range(i, min(i + max_sentences, len(dataset)))]
for i in range(0, len(dataset), max_sentences)
]
total_row_count = dataset.dataset.get_total_row_count()
num_batches = math.ceil(math.ceil(total_row_count / num_shards) / max_sentences)
if len(batch_sampler) < num_batches:
batch_sampler.append([])
# return a reusable, sharded iterator
epoch_iter = iterators.EpochBatchIterator(
dataset=dataset,
collate_fn=dataset.collater,
batch_sampler=batch_sampler,
seed=seed,
num_shards=1,
shard_id=0,
num_workers=num_workers,
epoch=epoch,
buffer_size=data_buffer_size
)
return epoch_iter
def build_model(self, cfg: FairseqDataclass):
model = super().build_model(cfg)
if self.cfg.bpe == 'bert':
bpe_dict = {
"_name": "bert",
"bpe_vocab_file": os.path.join(self.cfg.bpe_dir, "vocab.txt"),
"bpe_cased": False
}
bpe_dict = DictConfig(bpe_dict)
self.bpe = self.build_bpe(bpe_dict)
else:
bpe_dict = {
"_name": "gpt2",
"gpt2_encoder_json": os.path.join(self.cfg.bpe_dir, "encoder.json"),
"gpt2_vocab_bpe": os.path.join(self.cfg.bpe_dir, "vocab.bpe")
}
bpe_dict = DictConfig(bpe_dict)
self.bpe = self.build_bpe(bpe_dict)
return model
def build_generator(
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None,
):
"""
Build a :class:`~fairseq.SequenceGenerator` instance for this
task.
Args:
models (List[~fairseq.models.FairseqModel]): ensemble of models
args (fairseq.dataclass.configs.GenerationConfig):
configuration object (dataclass) for generation
extra_gen_cls_kwargs (Dict[str, Any]): extra options to pass
through to SequenceGenerator
prefix_allowed_tokens_fn (Callable[[int, torch.Tensor], List[int]]):
If provided, this function constrains the beam search to
allowed tokens only at each step. The provided function
should take 2 arguments: the batch ID (`batch_id: int`)
and a unidimensional tensor of token ids (`inputs_ids:
torch.Tensor`). It has to return a `List[int]` with the
allowed tokens for the next generation step conditioned
on the previously generated tokens (`inputs_ids`) and
the batch ID (`batch_id`). This argument is useful for
constrained generation conditioned on the prefix, as
described in "Autoregressive Entity Retrieval"
(https://arxiv.org/abs/2010.00904) and
https://github.com/facebookresearch/GENRE.
"""
if getattr(args, "score_reference", False):
from fairseq.sequence_scorer import SequenceScorer
return SequenceScorer(
self.target_dictionary,
compute_alignment=getattr(args, "print_alignment", False),
)
from fairseq.sequence_generator import (
# SequenceGenerator,
SequenceGeneratorWithAlignment,
)
from models.sequence_generator import SequenceGenerator
# Choose search strategy. Defaults to Beam Search.
sampling = getattr(args, "sampling", False)
sampling_topk = getattr(args, "sampling_topk", -1)
sampling_topp = getattr(args, "sampling_topp", -1.0)
diverse_beam_groups = getattr(args, "diverse_beam_groups", -1)
diverse_beam_strength = getattr(args, "diverse_beam_strength", 0.5)
match_source_len = getattr(args, "match_source_len", False)
diversity_rate = getattr(args, "diversity_rate", -1)
constrained = getattr(args, "constraints", False)
if prefix_allowed_tokens_fn is None:
prefix_allowed_tokens_fn = getattr(args, "prefix_allowed_tokens_fn", None)
if (
sum(
int(cond)
for cond in [
sampling,
diverse_beam_groups > 0,
match_source_len,
diversity_rate > 0,
]
)
> 1
):
raise ValueError("Provided Search parameters are mutually exclusive.")
assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling"
assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling"
if sampling:
search_strategy = search.Sampling(
self.target_dictionary, sampling_topk, sampling_topp
)
elif diverse_beam_groups > 0:
search_strategy = search.DiverseBeamSearch(
self.target_dictionary, diverse_beam_groups, diverse_beam_strength
)
elif match_source_len:
# this is useful for tagging applications where the output
# length should match the input length, so we hardcode the
# length constraints for simplicity
search_strategy = search.LengthConstrainedBeamSearch(
self.target_dictionary,
min_len_a=1,
min_len_b=0,
max_len_a=1,
max_len_b=0,
)
elif diversity_rate > -1:
search_strategy = search.DiverseSiblingsSearch(
self.target_dictionary, diversity_rate
)
elif constrained:
search_strategy = search.LexicallyConstrainedBeamSearch(
self.target_dictionary, args.constraints
)
elif prefix_allowed_tokens_fn:
search_strategy = search.PrefixConstrainedBeamSearch(
self.target_dictionary, prefix_allowed_tokens_fn
)
else:
search_strategy = search.BeamSearch(self.target_dictionary)
extra_gen_cls_kwargs = extra_gen_cls_kwargs or {}
if seq_gen_cls is None:
if getattr(args, "print_alignment", False):
seq_gen_cls = SequenceGeneratorWithAlignment
extra_gen_cls_kwargs["print_alignment"] = args.print_alignment
else:
seq_gen_cls = SequenceGenerator
return seq_gen_cls(
models,
self.target_dictionary,
beam_size=getattr(args, "beam", 5),
max_len_a=getattr(args, "max_len_a", 0),
max_len_b=getattr(args, "max_len_b", 200),
min_len=getattr(args, "min_len", 1),
normalize_scores=(not getattr(args, "unnormalized", False)),
len_penalty=getattr(args, "lenpen", 1),
unk_penalty=getattr(args, "unkpen", 0),
temperature=getattr(args, "temperature", 1.0),
match_source_len=getattr(args, "match_source_len", False),
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
search_strategy=search_strategy,
constraint_range=self.cfg.constraint_range,
**extra_gen_cls_kwargs,
)
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False, **extra_kwargs
):
"""
Do forward and backward, and return the loss as computed by *criterion*
for the given *model* and *sample*.
Args:
sample (dict): the mini-batch. The format is defined by the
:class:`~fairseq.data.FairseqDataset`.
model (~fairseq.models.BaseFairseqModel): the model
criterion (~fairseq.criterions.FairseqCriterion): the criterion
optimizer (~fairseq.optim.FairseqOptimizer): the optimizer
update_num (int): the current update
ignore_grad (bool): multiply loss by 0 if this is set to True
Returns:
tuple:
- the loss
- the sample size, which is used as the denominator for the
gradient
- logging outputs to display while training
"""
model.train()
model.set_num_updates(update_num)
with torch.autograd.profiler.record_function("forward"):
with torch.cuda.amp.autocast(enabled=(isinstance(optimizer, AMPOptimizer))):
loss, sample_size, logging_output = criterion(model, sample, update_num=update_num)
if ignore_grad:
loss *= 0
with torch.autograd.profiler.record_function("backward"):
optimizer.backward(loss)
return loss, sample_size, logging_output
def max_positions(self):
"""Return the max sentence length allowed by the task."""
return (self.cfg.max_source_positions, self.cfg.max_target_positions)
@property
def source_dictionary(self):
"""Return the source :class:`~fairseq.data.Dictionary`."""
return self.src_dict
@property
def target_dictionary(self):
"""Return the target :class:`~fairseq.data.Dictionary`."""
return self.tgt_dict
|