File size: 6,291 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env bash

# The port for communication. Note that if you want to run multiple tasks on the same machine,
# you need to specify different port numbers.
# Number of GPUs per GPU worker
export GPUS_PER_NODE=8
# Number of GPU workers, for single-worker training, please set to 1
export NUM_NODES=$SLURM_NNODES
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr

# The port for communication
export MASTER_PORT=12350
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=$SLURM_NODEID

echo "MASTER_ADDR: $MASTER_ADDR"
echo "RANK :$RANK"
echo "NUM_NODES :$NUM_NODES"
echo "GPUS_PER_NODE :$GPUS_PER_NODE"

export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/

echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH"

num_workers=0


exp_name=eval_nocaps_stage_1_ofaplus_base_pretrain_s2



ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival
base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data
base_log_dir=/work/NAT/gda2204/mshukor/logs




bpe_dir=${ofa_dir}/utils/BPE
user_dir=${ofa_dir}/ofa_module


data_dir=${base_data_dir}/ofa/caption_data
split=val # val  

zero_shot=''

read_from_img_path='--read-from-img-path' #'--read-from-img-path' # ''



new_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs



model_name=avg_postratafusevanilla
path=/lus/scratch/NAT/gda2204/SHARED/logs/ofa/pretrained_models/average_models/avg_postratafusevanilla.pt
zero_shot='--zero-shot'


result_path=${new_base_log_dir}/ofa/results/caption/eval_${model_name}_${split}
mkdir ${result_path}

selected_cols=1,4,2


image_encoder_name=timm_resnet #vit_base_patch16_224 timm_resnet resnet
resnet_type=resnet101



data=${data_dir}/nocaps_${split}.tsv # caption_val caption_test

python3 -m torch.distributed.launch \
    --nnodes=${NUM_NODES} \
    --nproc_per_node=${GPUS_PER_NODE} \
    --master_port=${MASTER_PORT} \
    --node_rank=${RANK} \
    --master_addr=${MASTER_ADDR} \
    --use_env ${ofa_dir}/evaluate.py \
    ${data} \
    --path=${path} \
    --user-dir=${user_dir} \
    --task=caption \
    --batch-size=16 \
    --log-format=simple --log-interval=10 \
    --seed=7 \
    --gen-subset=${split} \
    --results-path=${result_path} \
    --beam=5 \
    --max-len-b=22 \
    --unnormalized \
    --no-repeat-ngram-size=3 \
    --fp16 \
    --num-workers=0 \
    --patch-image-size=480 \
    ${zero_shot} \
    ${read_from_img_path} \
    --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"eval_cider\":False,\"selected_cols\":\"${selected_cols}\"}"


python ${ofa_dir}/run_scripts/caption/coco_eval.py ${result_path}/${split}_predict.json ${data_dir}/nocaps_val_caption_coco_format.json




echo "In Domain Eval"
data=${data_dir}/nocaps_indomain_${split}.tsv # caption_val caption_test

result_path=${new_base_log_dir}/ofa/results/caption/eval_nocaps_indomain_${model_name}_${split}


python3 -m torch.distributed.launch \
    --nnodes=${NUM_NODES} \
    --nproc_per_node=${GPUS_PER_NODE} \
    --master_port=${MASTER_PORT} \
    --node_rank=${RANK} \
    --master_addr=${MASTER_ADDR} \
    --use_env ${ofa_dir}/evaluate.py \
    ${data} \
    --path=${path} \
    --user-dir=${user_dir} \
    --task=caption \
    --batch-size=16 \
    --log-format=simple --log-interval=10 \
    --seed=7 \
    --gen-subset=${split} \
    --results-path=${result_path} \
    --beam=5 \
    --max-len-b=22 \
    --unnormalized \
    --no-repeat-ngram-size=3 \
    --fp16 \
    --num-workers=0 \
    --patch-image-size=480 \
    ${zero_shot} \
    ${read_from_img_path} \
    --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"eval_cider\":False,\"selected_cols\":\"${selected_cols}\"}"


python ${ofa_dir}/run_scripts/caption/coco_eval.py ${result_path}/${split}_predict.json ${data_dir}/nocaps_val_caption_coco_format.json



echo "Near Domain Eval"
data=${data_dir}/nocaps_neardomain_${split}.tsv # caption_val caption_test

result_path=${new_base_log_dir}/ofa/results/caption/eval_nocaps_neardomain_${model_name}_${split}


python3 -m torch.distributed.launch \
    --nnodes=${NUM_NODES} \
    --nproc_per_node=${GPUS_PER_NODE} \
    --master_port=${MASTER_PORT} \
    --node_rank=${RANK} \
    --master_addr=${MASTER_ADDR} \
    --use_env ${ofa_dir}/evaluate.py \
    ${data} \
    --path=${path} \
    --user-dir=${user_dir} \
    --task=caption \
    --batch-size=16 \
    --log-format=simple --log-interval=10 \
    --seed=7 \
    --gen-subset=${split} \
    --results-path=${result_path} \
    --beam=5 \
    --max-len-b=22 \
    --unnormalized \
    --no-repeat-ngram-size=3 \
    --fp16 \
    --num-workers=0 \
    --patch-image-size=480 \
    ${zero_shot} \
    ${read_from_img_path} \
    --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"eval_cider\":False,\"selected_cols\":\"${selected_cols}\"}"


python ${ofa_dir}/run_scripts/caption/coco_eval.py ${result_path}/${split}_predict.json ${data_dir}/nocaps_val_caption_coco_format.json



echo "Out Domain Eval"
data=${data_dir}/nocaps_outdomain_${split}.tsv # caption_val caption_test

result_path=${new_base_log_dir}/ofa/results/caption/eval_nocaps_outdomain_${model_name}_${split}


python3 -m torch.distributed.launch \
    --nnodes=${NUM_NODES} \
    --nproc_per_node=${GPUS_PER_NODE} \
    --master_port=${MASTER_PORT} \
    --node_rank=${RANK} \
    --master_addr=${MASTER_ADDR} \
    --use_env ${ofa_dir}/evaluate.py \
    ${data} \
    --path=${path} \
    --user-dir=${user_dir} \
    --task=caption \
    --batch-size=16 \
    --log-format=simple --log-interval=10 \
    --seed=7 \
    --gen-subset=${split} \
    --results-path=${result_path} \
    --beam=5 \
    --max-len-b=22 \
    --unnormalized \
    --no-repeat-ngram-size=3 \
    --fp16 \
    --num-workers=0 \
    --patch-image-size=480 \
    ${zero_shot} \
    ${read_from_img_path} \
    --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"eval_cider\":False,\"selected_cols\":\"${selected_cols}\"}"


python ${ofa_dir}/run_scripts/caption/coco_eval.py ${result_path}/${split}_predict.json ${data_dir}/nocaps_val_caption_coco_format.json