File size: 5,072 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env

# The port for communication. Note that if you want to run multiple tasks on the same machine,
# you need to specify different port numbers.
# Number of GPUs per GPU worker
export GPUS_PER_NODE=8
# Number of GPU workers, for single-worker training, please set to 1
export NUM_NODES=$SLURM_NNODES
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr

# The port for communication
export MASTER_PORT=12350
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=$SLURM_NODEID

echo "MASTER_ADDR: $MASTER_ADDR"
echo "RANK :$RANK"
echo "NUM_NODES :$NUM_NODES"
echo "GPUS_PER_NODE :$GPUS_PER_NODE"

export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/

echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH"



exp_name=unival_refcocog



ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival
base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data
base_log_dir=/work/NAT/gda2204/mshukor/logs

new_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs
save_dir=${new_base_log_dir}/ofa/checkpoints/refcocog/${exp_name}


log_dir=${save_dir}


mkdir -p $log_dir $save_dir

bpe_dir=${ofa_dir}/utils/BPE
user_dir=${ofa_dir}/ofa_module

image_dir=${base_data_dir}

data_dir=${base_data_dir}/ofa/refcocog_data
data=${data_dir}/refcocog_train_1.tsv,${data_dir}/refcocog_train_2.tsv,${data_dir}/refcocog_train_3.tsv,${data_dir}/refcocog_train_4.tsv,${data_dir}/refcocog_train_5.tsv,${data_dir}/refcocog_train_6.tsv,${data_dir}/refcocog_train_7.tsv,${data_dir}/refcocog_train_8.tsv,${data_dir}/refcocog_train_9.tsv,${data_dir}/refcocog_train_10.tsv,${data_dir}/refcocog_val.tsv

restore_file=${base_log_dir}/ofa/checkpoints/pretrain/unival_s2_hs/checkpoint1.pt

selected_cols=0,4,2,3

task=refcoco
arch=unival_base
pretrained_model=  

criterion=adjust_label_smoothed_cross_entropy
label_smoothing=0.1
lr=5e-5
max_epoch=10
warmup_ratio=0.06
batch_size=8
update_freq=4
resnet_drop_path_rate=0.0
encoder_drop_path_rate=0.1
decoder_drop_path_rate=0.1
dropout=0.1
attention_dropout=0.0
max_src_length=80
max_tgt_length=20
num_bins=1000
patch_image_size=512


image_encoder_name=timm_resnet #vit_base_patch16_224
resnet_type=resnet101

save_interval=1
validate_interval_updates=2000
save_interval_updates=0

sample_patch_num='--sample-patch-num=784' # ''


echo "max_epoch "${max_epoch}
echo "lr "${lr}
echo "patch_image_size "${patch_image_size}

log_file=${log_dir}/${max_epoch}"_"${lr}"_"${patch_image_size}".log"
save_path=${save_dir}/${max_epoch}"_"${lr}"_"${patch_image_size}
mkdir -p $save_path

acc_thresh=0.5

python3 -m torch.distributed.launch \
    --nnodes=${NUM_NODES} \
    --nproc_per_node=${GPUS_PER_NODE} \
    --master_port=${MASTER_PORT} \
    --node_rank=${RANK} \
    --master_addr=${MASTER_ADDR} \
    --use_env ${ofa_dir}/train.py \
    $data \
    --selected-cols=${selected_cols} \
    --bpe-dir=${bpe_dir} \
    --user-dir=${user_dir} \
    --restore-file=${restore_file} \
    --reset-optimizer --reset-dataloader --reset-meters \
    --save-dir=${save_path} \
    --task=${task} \
    --arch=${arch} \
    --criterion=${criterion} \
    --label-smoothing=${label_smoothing} \
    --batch-size=${batch_size} \
    --update-freq=${update_freq} \
    --encoder-normalize-before \
    --decoder-normalize-before \
    --share-decoder-input-output-embed \
    --share-all-embeddings \
    --layernorm-embedding \
    --patch-layernorm-embedding \
    --code-layernorm-embedding \
    --resnet-drop-path-rate=${resnet_drop_path_rate} \
    --encoder-drop-path-rate=${encoder_drop_path_rate} \
    --decoder-drop-path-rate=${decoder_drop_path_rate} \
    --dropout=${dropout} \
    --attention-dropout=${attention_dropout} \
    --weight-decay=0.01 --optimizer=adam --adam-betas="(0.9,0.999)" --adam-eps=1e-08 --clip-norm=1.0 \
    --lr-scheduler=polynomial_decay --lr=${lr} \
    --max-epoch=${max_epoch} --warmup-ratio=${warmup_ratio} \
    --log-format=simple --log-interval=10 \
    --fixed-validation-seed=7 \
    --no-epoch-checkpoints --keep-best-checkpoints=1 \
    --save-interval=${save_interval} --validate-interval=1 \
    --save-interval-updates=${save_interval_updates} --validate-interval-updates=${validate_interval_updates} \
    --eval-acc \
    --eval-args='{"beam":5,"min_len":4,"max_len_a":0,"max_len_b":4}' \
    --best-checkpoint-metric=score --maximize-best-checkpoint-metric \
    --max-src-length=${max_src_length} \
    --max-tgt-length=${max_tgt_length} \
    --find-unused-parameters \
    --add-type-embedding \
    --scale-attn \
    --scale-fc \
    --scale-heads \
    --disable-entangle \
    --num-bins=${num_bins} \
    --patch-image-size=${patch_image_size} \
    --fp16 \
    --fp16-scale-window=512 \
    --num-workers=0 \
    --image-dir=${image_dir} \
    ${sample_patch_num} \
    --acc-thresh=${acc_thresh} \
    --image-encoder-name=${image_encoder_name} \
    --strict