File size: 5,072 Bytes
26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
#!/usr/bin/env
# The port for communication. Note that if you want to run multiple tasks on the same machine,
# you need to specify different port numbers.
# Number of GPUs per GPU worker
export GPUS_PER_NODE=8
# Number of GPU workers, for single-worker training, please set to 1
export NUM_NODES=$SLURM_NNODES
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr
# The port for communication
export MASTER_PORT=12350
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=$SLURM_NODEID
echo "MASTER_ADDR: $MASTER_ADDR"
echo "RANK :$RANK"
echo "NUM_NODES :$NUM_NODES"
echo "GPUS_PER_NODE :$GPUS_PER_NODE"
export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/
echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH"
exp_name=unival_refcocog
ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival
base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data
base_log_dir=/work/NAT/gda2204/mshukor/logs
new_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs
save_dir=${new_base_log_dir}/ofa/checkpoints/refcocog/${exp_name}
log_dir=${save_dir}
mkdir -p $log_dir $save_dir
bpe_dir=${ofa_dir}/utils/BPE
user_dir=${ofa_dir}/ofa_module
image_dir=${base_data_dir}
data_dir=${base_data_dir}/ofa/refcocog_data
data=${data_dir}/refcocog_train_1.tsv,${data_dir}/refcocog_train_2.tsv,${data_dir}/refcocog_train_3.tsv,${data_dir}/refcocog_train_4.tsv,${data_dir}/refcocog_train_5.tsv,${data_dir}/refcocog_train_6.tsv,${data_dir}/refcocog_train_7.tsv,${data_dir}/refcocog_train_8.tsv,${data_dir}/refcocog_train_9.tsv,${data_dir}/refcocog_train_10.tsv,${data_dir}/refcocog_val.tsv
restore_file=${base_log_dir}/ofa/checkpoints/pretrain/unival_s2_hs/checkpoint1.pt
selected_cols=0,4,2,3
task=refcoco
arch=unival_base
pretrained_model=
criterion=adjust_label_smoothed_cross_entropy
label_smoothing=0.1
lr=5e-5
max_epoch=10
warmup_ratio=0.06
batch_size=8
update_freq=4
resnet_drop_path_rate=0.0
encoder_drop_path_rate=0.1
decoder_drop_path_rate=0.1
dropout=0.1
attention_dropout=0.0
max_src_length=80
max_tgt_length=20
num_bins=1000
patch_image_size=512
image_encoder_name=timm_resnet #vit_base_patch16_224
resnet_type=resnet101
save_interval=1
validate_interval_updates=2000
save_interval_updates=0
sample_patch_num='--sample-patch-num=784' # ''
echo "max_epoch "${max_epoch}
echo "lr "${lr}
echo "patch_image_size "${patch_image_size}
log_file=${log_dir}/${max_epoch}"_"${lr}"_"${patch_image_size}".log"
save_path=${save_dir}/${max_epoch}"_"${lr}"_"${patch_image_size}
mkdir -p $save_path
acc_thresh=0.5
python3 -m torch.distributed.launch \
--nnodes=${NUM_NODES} \
--nproc_per_node=${GPUS_PER_NODE} \
--master_port=${MASTER_PORT} \
--node_rank=${RANK} \
--master_addr=${MASTER_ADDR} \
--use_env ${ofa_dir}/train.py \
$data \
--selected-cols=${selected_cols} \
--bpe-dir=${bpe_dir} \
--user-dir=${user_dir} \
--restore-file=${restore_file} \
--reset-optimizer --reset-dataloader --reset-meters \
--save-dir=${save_path} \
--task=${task} \
--arch=${arch} \
--criterion=${criterion} \
--label-smoothing=${label_smoothing} \
--batch-size=${batch_size} \
--update-freq=${update_freq} \
--encoder-normalize-before \
--decoder-normalize-before \
--share-decoder-input-output-embed \
--share-all-embeddings \
--layernorm-embedding \
--patch-layernorm-embedding \
--code-layernorm-embedding \
--resnet-drop-path-rate=${resnet_drop_path_rate} \
--encoder-drop-path-rate=${encoder_drop_path_rate} \
--decoder-drop-path-rate=${decoder_drop_path_rate} \
--dropout=${dropout} \
--attention-dropout=${attention_dropout} \
--weight-decay=0.01 --optimizer=adam --adam-betas="(0.9,0.999)" --adam-eps=1e-08 --clip-norm=1.0 \
--lr-scheduler=polynomial_decay --lr=${lr} \
--max-epoch=${max_epoch} --warmup-ratio=${warmup_ratio} \
--log-format=simple --log-interval=10 \
--fixed-validation-seed=7 \
--no-epoch-checkpoints --keep-best-checkpoints=1 \
--save-interval=${save_interval} --validate-interval=1 \
--save-interval-updates=${save_interval_updates} --validate-interval-updates=${validate_interval_updates} \
--eval-acc \
--eval-args='{"beam":5,"min_len":4,"max_len_a":0,"max_len_b":4}' \
--best-checkpoint-metric=score --maximize-best-checkpoint-metric \
--max-src-length=${max_src_length} \
--max-tgt-length=${max_tgt_length} \
--find-unused-parameters \
--add-type-embedding \
--scale-attn \
--scale-fc \
--scale-heads \
--disable-entangle \
--num-bins=${num_bins} \
--patch-image-size=${patch_image_size} \
--fp16 \
--fp16-scale-window=512 \
--num-workers=0 \
--image-dir=${image_dir} \
${sample_patch_num} \
--acc-thresh=${acc_thresh} \
--image-encoder-name=${image_encoder_name} \
--strict
|