File size: 5,242 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
import sys
from argparse import Namespace
from itertools import chain

import torch
from fairseq import checkpoint_utils, distributed_utils, options, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import metrics, progress_bar
from fairseq.utils import reset_logging
from omegaconf import DictConfig


logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=os.environ.get("LOGLEVEL", "INFO").upper(),
    stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.validate")


def main(cfg: DictConfig, override_args=None):
    if isinstance(cfg, Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    utils.import_user_module(cfg.common)

    reset_logging()

    assert (
        cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
    ), "Must specify batch size either with --max-tokens or --batch-size"

    use_fp16 = cfg.common.fp16
    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    if use_cuda:
        torch.cuda.set_device(cfg.distributed_training.device_id)

    if cfg.distributed_training.distributed_world_size > 1:
        data_parallel_world_size = distributed_utils.get_data_parallel_world_size()
        data_parallel_rank = distributed_utils.get_data_parallel_rank()
    else:
        data_parallel_world_size = 1
        data_parallel_rank = 0

    if override_args is not None:
        overrides = vars(override_args)
        overrides.update(eval(getattr(override_args, "model_overrides", "{}")))
    else:
        overrides = None

    # Load ensemble
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
        [cfg.common_eval.path],
        arg_overrides=overrides,
        suffix=cfg.checkpoint.checkpoint_suffix,
    )
    model = models[0]

    # Move models to GPU
    for model in models:
        model.eval()
        if use_fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Print args
    logger.info(saved_cfg)

    # Build criterion
    criterion = task.build_criterion(saved_cfg.criterion)
    criterion.eval()

    for subset in cfg.dataset.valid_subset.split(","):
        try:
            task.load_dataset(subset, combine=False, epoch=1, task_cfg=saved_cfg.task)
            dataset = task.dataset(subset)
        except KeyError:
            raise Exception("Cannot find dataset: " + subset)

        # Initialize data iterator
        itr = task.get_batch_iterator(
            dataset=dataset,
            max_tokens=cfg.dataset.max_tokens,
            max_sentences=cfg.dataset.batch_size,
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                *[m.max_positions() for m in models],
            ),
            ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
            seed=cfg.common.seed,
            num_shards=data_parallel_world_size,
            shard_id=data_parallel_rank,
            num_workers=cfg.dataset.num_workers,
            data_buffer_size=cfg.dataset.data_buffer_size,
        ).next_epoch_itr(shuffle=False)
        progress = progress_bar.progress_bar(
            itr,
            log_format=cfg.common.log_format,
            log_interval=cfg.common.log_interval,
            prefix=f"valid on '{subset}' subset",
            default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
        )

        log_outputs = []
        for i, sample in enumerate(progress):
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            _loss, _sample_size, log_output = task.valid_step(sample, model, criterion)
            progress.log(log_output, step=i)
            log_outputs.append(log_output)

        if data_parallel_world_size > 1:
            log_outputs = distributed_utils.all_gather_list(
                log_outputs,
                max_size=cfg.common.all_gather_list_size,
                group=distributed_utils.get_data_parallel_group(),
            )
            log_outputs = list(chain.from_iterable(log_outputs))

        with metrics.aggregate() as agg:
            task.reduce_metrics(log_outputs, criterion)
            log_output = agg.get_smoothed_values()

        progress.print(log_output, tag=subset, step=i)


def cli_main():
    parser = options.get_validation_parser()
    args = options.parse_args_and_arch(parser)

    # only override args that are explicitly given on the command line
    override_parser = options.get_validation_parser()
    override_args = options.parse_args_and_arch(
        override_parser, suppress_defaults=True
    )

    distributed_utils.call_main(
        convert_namespace_to_omegaconf(args), main, override_args=override_args
    )


if __name__ == "__main__":
    cli_main()