File size: 45,558 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
# Modified from OFA code.
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.

from io import BytesIO

import math
import logging
import random
import warnings

import numpy as np
import torch
import base64
from torchvision import transforms

from PIL import Image, ImageFile

from data import data_utils
from data.ofa_dataset import OFADataset
from utils.vision_helper import RandomAugment
import utils.transforms as T

import os 

from data.video_utils import VIDEO_READER_FUNCS
from torchvision.transforms import InterpolationMode

# audio
from data.audio_utils import get_audio_features, int16_to_float32, float32_to_int16, AUDIO_CFG
import soundfile as sf
import librosa

from decord.bridge import to_torch 
import decord


import random 

ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None

logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)


def get_whole_word_mask(bpe, dictionary):
    if bpe is not None:

        def is_beginning_of_word(i):
            if i < dictionary.nspecial:
                # special elements are always considered beginnings
                return True
            tok = dictionary[i]
            if tok.startswith("madeupword"):
                return True
            try:
                return bpe.is_beginning_of_word(tok)
            except ValueError:
                return True

        mask_whole_words = torch.ByteTensor(
            list(map(is_beginning_of_word, range(len(dictionary))))
        )
        return mask_whole_words
    return None


def collate(samples, pad_idx, eos_idx):
    if len(samples) == 0:
        return {}

    def merge(key, samples=samples):
        return data_utils.collate_tokens(
            [s[key] for s in samples],
            pad_idx,
            eos_idx=eos_idx,
        )


    id = np.array([s["id"] for s in samples])
    src_tokens = merge("source")
    src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])

    patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
    patch_masks = torch.cat([sample['patch_mask'] for sample in samples])



    patch_videos = torch.stack([sample['patch_video'] for sample in samples], dim=0)
    patch_types = torch.cat([sample['patch_type'] for sample in samples])

    patch_audios = torch.stack([sample['patch_audio'] for sample in samples], dim=0)


    code_masks = None
    if samples[0].get("code_mask", None) is not None:
        code_masks = torch.cat([sample['code_mask'] for sample in samples])

    conf = torch.cat([s['conf'] for s in samples], dim=0)

    prev_output_tokens = None
    target = None
    if samples[0].get("target", None) is not None:
        target = merge("target")
        tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
        ntokens = tgt_lengths.sum().item()

        if samples[0].get("prev_output_tokens", None) is not None:
            prev_output_tokens = merge("prev_output_tokens")
    else:
        ntokens = src_lengths.sum().item()

    batch = {
        "id": id,
        "nsentences": len(samples),
        "ntokens": ntokens,
        "net_input": {
            "src_tokens": src_tokens,
            "src_lengths": src_lengths,
            "patch_images": patch_images,
            "patch_videos": patch_videos,
            "patch_masks": patch_masks,
            "code_masks": code_masks,
            "prev_output_tokens": prev_output_tokens,
            "patch_types": patch_types,
            "patch_audios": patch_audios,
        },
        "target": target,
        "conf": conf
    }


    return batch


class UnifyDataset(OFADataset):
    def __init__(
        self,
        split,
        dataset,
        bpe,
        src_dict,
        tgt_dict=None,
        max_src_length=128,
        max_tgt_length=30,
        seed=7,
        code_dict_size=8192,
        num_bins=1000,
        patch_image_size=384,
        code_image_size=128,
        all_object_list=None,
        all_caption_list=None,
        type2ans_dict=None,
        ans2type_dict=None,
        max_image_size=512,
        mask_ratio=0.3,
        random_ratio=0.0,
        keep_ratio=0.0,
        mask_length="span-poisson",
        poisson_lambda=3.0,
        replace_length=1,
        read_from_img_path=False,
        image_dir='/gpfsscratch/rech/dyf/ugz83ue/data', 
        no_image_transform=False,
        patch_frame_size=224,
        num_frames=4,
        num_tries=2,
        video_cnt=2,
        all_caption_video_list=None,
        audio_cfg=AUDIO_CFG,
        max_audio_len = 480000,
        sample_rate=48000,
        audio_cnt=2,
        all_caption_audio_list=None,
        audio_dataset=None,
        video_dataset=None,
        sample_type='rand',
        image_text_dataset=None,
        image_text_cnt=1,
        other_data_cnt=8,
        init_image_text_dataset=None,
        init_text_dataset=None,
        init_dataset_epoch=0,
        image_text_vqa_dataset=None,
        image_text_vqa_cnt=1,
        image_text_ground_dataset=None,
        image_text_ground_cnt=1,
        only_video_data=None,
        only_audio_data=None,
        video_text_dataset=None,
        video_text_cnt=1,
        audio_text_dataset=None,
        audio_text_cnt=1,
        audio_with_video=False,
    ):
        super().__init__(split, dataset, bpe, src_dict, tgt_dict)
        self.max_src_length = max_src_length
        self.max_tgt_length = max_tgt_length
        self.seed = seed
        self.code_dict_size = code_dict_size
        self.num_bins = num_bins
        self.patch_image_size = patch_image_size
        self.code_image_size = code_image_size
        self.patch_frame_size = patch_frame_size



        self.image_text_dataset = image_text_dataset
        self.image_text_cnt = image_text_cnt

        self.image_text_ground_dataset = image_text_ground_dataset
        self.image_text_ground_cnt = image_text_ground_cnt

        self.image_text_vqa_dataset = image_text_vqa_dataset
        self.image_text_vqa_cnt = image_text_vqa_cnt

        self.other_data_cnt = other_data_cnt
        # audio 
        self.audio_dataset = audio_dataset
        self.audio_cnt=audio_cnt
        self.epoch = 0
        self.audio_with_video = audio_with_video

        ## video 
        self.video_text_dataset = video_text_dataset
        self.video_text_cnt = video_text_cnt

        self.audio_text_dataset = audio_text_dataset
        self.audio_text_cnt = audio_text_cnt


        # init dataset
        self.init_image_text_dataset = init_image_text_dataset
        self.init_dataset_epoch = init_dataset_epoch

        self.init_text_dataset = init_text_dataset

        self.sample_rate = sample_rate


        self.all_object_list = all_object_list
        self.all_caption_list = all_caption_list
        self.type2ans_dict = type2ans_dict
        self.ans2type_dict = ans2type_dict

        self.mask_ratio = mask_ratio
        self.random_ratio = random_ratio
        self.keep_ratio = keep_ratio
        self.mask_length = mask_length
        self.poisson_lambda = poisson_lambda
        self.replace_length = replace_length
        if self.replace_length not in [-1, 0, 1]:
            raise ValueError(f"invalid arg: replace_length={self.replace_length}")
        if self.mask_length not in ["subword", "word", "span-poisson"]:
            raise ValueError(f"invalid arg: mask-length={self.mask_length}")
        if self.mask_length == "subword" and self.replace_length not in [0, 1]:
            raise ValueError(f"if using subwords, use replace-length=1 or 0")

        self.mask_idx = src_dict.index("<mask>")
        self.mask_whole_word = (
            get_whole_word_mask(self.bpe, self.src_dict)
            if self.mask_length != "subword"
            else None
        )
        self.mask_span_distribution = None
        if self.mask_length == "span-poisson":
            _lambda = self.poisson_lambda
            lambda_to_the_k = 1
            e_to_the_minus_lambda = math.exp(-_lambda)
            k_factorial = 1
            ps = []
            for k in range(0, 128):
                ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
                lambda_to_the_k *= _lambda
                k_factorial *= k + 1
                if ps[-1] < 0.0000001:
                    break
            ps = torch.FloatTensor(ps)
            self.mask_span_distribution = torch.distributions.Categorical(ps)

        self.pos_tgt_item = self.encode_text(" yes")
        self.neg_tgt_item = self.encode_text(" no")

        self.mask_left = self.mask_top = int(0.5 * self.code_image_size)
        self.mask_right = self.mask_bottom = int(1.5 * self.code_image_size)
        self.mask_ids = [
            i*self.code_image_size*2+j
            for i in range(self.code_image_size*2) for j in range(self.code_image_size*2)
            if not (self.mask_left <= i < self.mask_right and self.mask_top <= j < self.mask_bottom)
        ]

        scales = np.arange(patch_image_size, 481).tolist()

        # video
        self.video_cnt = video_cnt
        self.video_dataset = video_dataset
        self.num_tries = num_tries
        type_transform = transforms.Lambda(lambda x: x.float().div(255.0))

        # for image-text pair
        if no_image_transform:
            self.patch_resize_transform = transforms.Compose([
                transforms.CenterCrop(patch_image_size),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            ])
            self.patch_video_resize_transform = transforms.Compose([
                transforms.CenterCrop(patch_frame_size),
                type_transform, 
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            ])
        else:
            self.patch_resize_transform = transforms.Compose([
                T.RandomResize(scales, max_size=672),
                transforms.CenterCrop(patch_image_size),
                RandomAugment(2, 7, isPIL=True, augs=['Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness',
                                                    'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            ])

            self.patch_video_resize_transform = transforms.Compose([
                transforms.RandomResizedCrop(patch_frame_size, scale=(0.5, 1.0),
                interpolation=InterpolationMode.BICUBIC,),
                transforms.RandomHorizontalFlip(),
                transforms.RandAugment(),
                type_transform,
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            ])



        # for visual grounding
        self.visual_grounding_transform = T.Compose([
            T.RandomResize(scales, max_size=672),
            T.ObjectCenterCrop((patch_image_size, patch_image_size)),
            T.ToTensor(),
            T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_image_size=max_image_size)
        ])

        self.read_from_img_path = read_from_img_path
        self.image_dir = image_dir

        # video
        self.num_frames =  num_frames
        self.sample_type = sample_type # fps1 rand
        self.video_reader = VIDEO_READER_FUNCS['decord'] 
        self.all_caption_video_list = all_caption_video_list

        


        # audio 
        self.audio_cfg = audio_cfg
        self.max_audio_len = max_audio_len
        self.all_caption_audio_list = all_caption_audio_list


        self.only_video_data = only_video_data
        self.only_audio_data = only_audio_data

    def set_epoch(self, epoch, **unused):
        self.epoch = epoch

    def get_negative_caption(self, caption, gt_objects):
        prob = random.random()
        if gt_objects is not None and gt_objects != '' and prob > 0.6:
            gt_object = random.choice(gt_objects.strip().split('&&'))
            negative_object = random.choice(self.all_object_list[:-1])
            negative_object = self.all_object_list[-1] if negative_object == gt_object else negative_object
            negative_caption = caption.replace(gt_object, negative_object)
        else:
            negative_caption = random.choice(self.all_caption_list)
        return negative_caption

    def get_negative_caption_video(self, caption, gt_objects):
        prob = random.random()
        if gt_objects is not None and gt_objects != '' and prob > 0.6:
            gt_object = random.choice(gt_objects.strip().split('&&'))
            negative_object = random.choice(self.all_object_list[:-1])
            negative_object = self.all_object_list[-1] if negative_object == gt_object else negative_object
            negative_caption = caption.replace(gt_object, negative_object)
        else:
            negative_caption = random.choice(self.all_caption_video_list)
        return negative_caption

    def get_negative_caption_audio(self, caption, gt_objects):
        prob = random.random()
        if gt_objects is not None and gt_objects != '' and prob > 0.6:
            gt_object = random.choice(gt_objects.strip().split('&&'))
            negative_object = random.choice(self.all_object_list[:-1])
            negative_object = self.all_object_list[-1] if negative_object == gt_object else negative_object
            negative_caption = caption.replace(gt_object, negative_object)
        else:
            negative_caption = random.choice(self.all_caption_audio_list)
        return negative_caption

    def get_negative_answer(self, answer, conf):
        prob = random.random()
        if conf > (prob + 0.1) and answer in self.ans2type_dict:
            negative_answer_type = self.ans2type_dict[answer]
            if negative_answer_type == 'how many' and answer.isdigit() and prob > 0.5:
                negative_answer = int(answer) + random.choice([-1, 1]) if answer != 0 else 1
            else:
                negative_answer_list = self.type2ans_dict[negative_answer_type]
                negative_answer = random.choice(negative_answer_list[:-1])
                negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer
            return negative_answer

        negative_answer_list = self.type2ans_dict['other']
        negative_answer = random.choice(negative_answer_list[:-1])
        negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer
        return negative_answer
 
    def process_image_text_pair(self, index, other_dataset=None):

        if other_dataset is None:
            uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = self.dataset[index]
        else:
            uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = other_dataset[index]

        if 'video' in type:
            patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
            patch_audio = torch.zeros(self.max_audio_len)
            patch_mask = torch.tensor([True])
            patch_type = torch.tensor([1])

            image_path = os.path.join(self.image_dir, image)
            data_path = image_path
            try:
                max_num_frames = self.max_num_frames if hasattr(self, "max_num_frames") else -1
                frames, frame_indices, video_duration = self.video_reader(
                    data_path, self.num_frames, self.sample_type, max_num_frames=max_num_frames
                )
            except Exception as e:
                new_index = random.randint(0, len(self) - 1)
                logger.warning(
                    f"Caught exception {e} when loading video {data_path}, "
                    f"randomly sample a new video as replacement"
                )
                return self.process_image_text_pair(new_index, other_dataset=other_dataset)

            patch_video = self.patch_video_resize_transform(frames)

            patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)


            conf = torch.tensor([1.0])

            if type == 'video_caption':
                tgt_caption = self.pre_caption(caption, self.max_tgt_length)
                pos_src_caption = self.pre_caption(caption, self.max_src_length)
                # assume the same negative samples as in for images, to test if distribution os video captions are different
                neg_src_caption = self.pre_caption(self.get_negative_caption_video(caption, gt_objects), self.max_src_length)
                src_item = self.encode_text(" what does the video describe?")
                tgt_item = self.encode_text(" {}".format(tgt_caption))
                pos_src_item = self.encode_text(' does the video describe " {} "?'.format(pos_src_caption))
                neg_src_item = self.encode_text(' does the video describe " {} "?'.format(neg_src_caption))
            else:
                print(type, "not implemented")
                assert NotImplemented
        elif 'audio' in type:
            patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
            patch_video = torch.zeros((3, self.num_frames, self.patch_image_size, self.patch_image_size))
            patch_mask = torch.tensor([True])
            patch_type = torch.tensor([2])

            image_path = os.path.join(self.image_dir, image)
            data_path = image_path


            try:
                audio_data, orig_sr = librosa.load(data_path, sr=self.audio_cfg['sample_rate'])  #sf.read(io.BytesIO(data_path))
                audio_data = int16_to_float32(float32_to_int16(audio_data))
                audio_data = torch.tensor(audio_data).float() # (T)
                # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
                if len(audio_data) == 0:
                    logger.warning(
                        f"Caught exception {e} when loading audio {data_path}, "
                        f"randomly sample a new audio as replacement"
                    )
                    return self.process_image_text_pair(new_index)

                sample = {}

                sample = get_audio_features(
                sample, audio_data, self.max_audio_len, 
                data_truncating='fusion', 
                data_filling='repeatpad',
                audio_cfg=self.audio_cfg
            )
            except Exception as e:
                new_index = random.randint(0, len(self) - 1)
                logger.warning(
                    f"Caught exception {e} when loading audio {data_path}, "
                    f"randomly sample a new audio as replacement"
                )
                return self.process_image_text_pair(new_index)



            patch_audio = sample['waveform']



            conf = torch.tensor([1.0])

            if type == 'audio_caption':
                tgt_caption = self.pre_caption(caption, self.max_tgt_length)
                pos_src_caption = self.pre_caption(caption, self.max_src_length)
                # assume the same negative samples as in for images, to test if distribution os video captions are different
                neg_src_caption = self.pre_caption(self.get_negative_caption_audio(caption, gt_objects), self.max_src_length)
                src_item = self.encode_text(" what does the audio describe?")
                tgt_item = self.encode_text(" {}".format(tgt_caption))
                pos_src_item = self.encode_text(' does the audio describe " {} "?'.format(pos_src_caption))
                neg_src_item = self.encode_text(' does the audio describe " {} "?'.format(neg_src_caption))
            else:
                print(type, "not implemented")
                assert NotImplemented


        else:
            # dummy video 
            patch_video = torch.zeros((3, self.num_frames, self.patch_frame_size, self.patch_frame_size))
            patch_audio = torch.zeros(self.max_audio_len)
            patch_type = torch.tensor([0])
            try:
                if self.read_from_img_path:
                    image_path = os.path.join(self.image_dir, image)
                    image = Image.open(image_path).convert("RGB")
                else:
                    image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
            except Exception as e:
                new_index = random.randint(0, len(self) - 1)
                logger.warning(
                    f"Caught exception {e} when loading image {image_path}, "
                    f"randomly sample a new image as replacement"
                )
                return self.process_image_text_pair(new_index)

            patch_image = self.patch_resize_transform(image) if type != 'visual_grounding' else None
            patch_mask = torch.tensor([True])
            conf = torch.tensor([1.0])
            if type == 'caption':
                tgt_caption = self.pre_caption(caption, self.max_tgt_length)
                pos_src_caption = self.pre_caption(caption, self.max_src_length)
                neg_src_caption = self.pre_caption(self.get_negative_caption(caption, gt_objects), self.max_src_length)
                src_item = self.encode_text(" what does the image describe?")
                tgt_item = self.encode_text(" {}".format(tgt_caption))
                pos_src_item = self.encode_text(' does the image describe " {} "?'.format(pos_src_caption))
                neg_src_item = self.encode_text(' does the image describe " {} "?'.format(neg_src_caption))
            elif type == 'qa':
                question = self.pre_question(question, self.max_src_length)
                ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in refs.split('&&')}
                answer = max(ref_dict, key=ref_dict.get)
                conf = ref_dict[answer]
                src_item = self.encode_text(" {}".format(question))
                tgt_item = self.encode_text(" {}".format(answer))
                conf = torch.tensor([conf])
                pos_src_item = self.encode_text(' what is the answer to question " {} ". is " {} "?'.format(question, answer))
                neg_src_item = self.encode_text(
                    ' what is the answer to question " {} ". is " {} "?'.format(question, self.get_negative_answer(answer, conf))
                )
            elif type == 'visual_grounding':
                conf = torch.tensor([1.0])
                w, h = image.size
                boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])}
                x0, y0, x1, y1 = refs.strip().split(',')
                boxes_target["boxes"] = torch.tensor([[float(x0), float(y0), float(x1), float(y1)]])
                boxes_target["labels"] = np.array([0])
                boxes_target["area"] = torch.tensor([(float(x1) - float(x0)) * (float(y1) - float(y0))])
                patch_image, boxes_target = self.visual_grounding_transform(image, boxes_target)
                quant_x0 = "<bin_{}>".format(int((boxes_target["boxes"][0][0] * (self.num_bins - 1)).round()))
                quant_y0 = "<bin_{}>".format(int((boxes_target["boxes"][0][1] * (self.num_bins - 1)).round()))
                quant_x1 = "<bin_{}>".format(int((boxes_target["boxes"][0][2] * (self.num_bins - 1)).round()))
                quant_y1 = "<bin_{}>".format(int((boxes_target["boxes"][0][3] * (self.num_bins - 1)).round()))
                region_coord = "{} {} {} {}".format(quant_x0, quant_y0, quant_x1, quant_y1)
                src_caption = self.pre_caption(caption, self.max_src_length)
                src_item = self.encode_text(' which region does the text " {} " describe?'.format(src_caption))
                tgt_item = self.encode_text(region_coord, use_bpe=False)
            else:
                logger.info('type {} is not implemented'.format(type))
                raise NotImplementedError

        src_item = torch.cat([self.bos_item, src_item, self.eos_item])
        target_item = torch.cat([tgt_item, self.eos_item])
        prev_output_item = torch.cat([self.bos_item, tgt_item])
        pos_src_item = torch.cat([self.bos_item, pos_src_item, self.eos_item]) if type != 'visual_grounding' else None
        neg_src_item = torch.cat([self.bos_item, neg_src_item, self.eos_item]) if type != 'visual_grounding' else None

        if type == 'caption' and dataset_name == 'cc12m':
            target_item[:2] = self.src_dict.pad()
            target_item[-1] = self.eos_item

        example = {
            "id": uniq_id,
            "source": src_item,
            "patch_image": patch_image,
            "patch_video": patch_video,
            "patch_mask": patch_mask,
            "target": target_item,
            "prev_output_tokens": prev_output_item,
            "conf": conf,
            "patch_type": patch_type,
            "patch_audio": patch_audio,
        }

        examples = [example]
        prob = random.random()
        if type == 'visual_grounding':
            region_example = example.copy()
            region_prefix_item = self.encode_text('  what does the region describe? region:')
            region_coord_item = self.encode_text('{}'.format(region_coord), use_bpe=False)
            region_src_item = torch.cat([region_prefix_item, region_coord_item])
            region_tgt_item = self.encode_text(' {}'.format(self.pre_caption(caption, self.max_tgt_length)))
            region_example["source"] = torch.cat([self.bos_item, region_src_item, self.eos_item])
            region_example["target"] = torch.cat([region_tgt_item, self.eos_item])
            region_example["prev_output_tokens"] = torch.cat([self.bos_item, region_tgt_item])
            region_example["conf"] = torch.tensor([1.0])
            examples.append(region_example)
        elif prob >= 0.5 and self.split == 'train':
            pos_example = example.copy()
            pos_example["source"] = pos_src_item
            pos_example["target"] = torch.cat([self.pos_tgt_item, self.eos_item])
            pos_example["prev_output_tokens"] = torch.cat([self.bos_item, self.pos_tgt_item])
            examples.append(pos_example)
        elif self.split == 'train':
            neg_example = example.copy()
            neg_example["source"] = neg_src_item
            neg_example["target"] = torch.cat([self.neg_tgt_item, self.eos_item])
            neg_example["prev_output_tokens"] = torch.cat([self.bos_item, self.neg_tgt_item])
            examples.append(neg_example)



        return examples

    def process_video_text_pair(self, index, tries=0, other_dataset=None):

        if other_dataset is not None:
            uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = other_dataset[index]
        else:
            uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = self.video_dataset[index]


        patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
        patch_audio = torch.zeros(self.max_audio_len)
        patch_mask = torch.tensor([True])
        patch_type = torch.tensor([1])

        image_path = os.path.join(self.image_dir, image)
        data_path = image_path
        try:
            max_num_frames = self.max_num_frames if hasattr(self, "max_num_frames") else -1
            frames, frame_indices, video_duration = self.video_reader(
                data_path, self.num_frames, self.sample_type, max_num_frames=max_num_frames
            )
        except Exception as e:
            new_index = random.randint(0, len(self) - 1)
            logger.warning(
                f"Caught exception {e} when loading video {data_path}, "
                f"randomly sample a new video as replacement"
            )
            if tries < self.num_tries:
                return self.process_video_text_pair(new_index, tries=tries+1, other_dataset=other_dataset)
            else:
                print("Videos are too corrupted, try increase the num_tries")
                raise 

        patch_video = self.patch_video_resize_transform(frames)

        patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)


        conf = torch.tensor([1.0])

        if type == 'video_caption':
            tgt_caption = self.pre_caption(caption, self.max_tgt_length)
            pos_src_caption = self.pre_caption(caption, self.max_src_length)
            # assume the same negative samples as in for images, to test if distribution os video captions are different
            neg_src_caption = self.pre_caption(self.get_negative_caption_video(caption, gt_objects), self.max_src_length)
            src_item = self.encode_text(" what does the video describe?")
            tgt_item = self.encode_text(" {}".format(tgt_caption))
            pos_src_item = self.encode_text(' does the video describe " {} "?'.format(pos_src_caption))
            neg_src_item = self.encode_text(' does the video describe " {} "?'.format(neg_src_caption))

        elif type == 'video_qa':
            
            question = self.pre_question(question, self.max_src_length)
            ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in refs.split('&&')}
            answer = max(ref_dict, key=ref_dict.get)
            conf = ref_dict[answer]
            src_item = self.encode_text(" {}".format(question))
            tgt_item = self.encode_text(" {}".format(answer))
            conf = torch.tensor([conf])
            pos_src_item = self.encode_text(' what is the answer to question " {} ". is " {} "?'.format(question, answer))
            neg_src_item = self.encode_text(
                ' what is the answer to question " {} ". is " {} "?'.format(question, self.get_negative_answer(answer, conf))
            )
        else:
            print(type, "not implemented")
            assert NotImplemented


        


        src_item = torch.cat([self.bos_item, src_item, self.eos_item])
        target_item = torch.cat([tgt_item, self.eos_item])
        prev_output_item = torch.cat([self.bos_item, tgt_item])
        pos_src_item = torch.cat([self.bos_item, pos_src_item, self.eos_item]) if type != 'visual_grounding' else None
        neg_src_item = torch.cat([self.bos_item, neg_src_item, self.eos_item]) if type != 'visual_grounding' else None


        example = {
            "id": uniq_id,
            "source": src_item,
            "patch_image": patch_image,
            "patch_video": patch_video,
            "patch_mask": patch_mask,
            "target": target_item,
            "prev_output_tokens": prev_output_item,
            "conf": conf,
            "patch_type": patch_type,
            "patch_audio": patch_audio,
        }

        examples = [example]
        prob = random.random()
        if prob >= 0.5 and self.split == 'train':
            pos_example = example.copy()
            pos_example["source"] = pos_src_item
            pos_example["target"] = torch.cat([self.pos_tgt_item, self.eos_item])
            pos_example["prev_output_tokens"] = torch.cat([self.bos_item, self.pos_tgt_item])
            examples.append(pos_example)
        elif self.split == 'train':
            neg_example = example.copy()
            neg_example["source"] = neg_src_item
            neg_example["target"] = torch.cat([self.neg_tgt_item, self.eos_item])
            neg_example["prev_output_tokens"] = torch.cat([self.bos_item, self.neg_tgt_item])
            examples.append(neg_example)


            

        return examples

    def process_audio_text_pair(self, index, other_dataset=None):

        if other_dataset is not None:
            uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = other_dataset[index]
        else:
            uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = self.audio_dataset[index]

        


        image_path = os.path.join(self.image_dir, image)
        data_path = image_path

        try:
            if '.mp4' in data_path: # extract audio from video 
                audio_reader = decord.AudioReader(data_path, sample_rate=self.audio_cfg['sample_rate'], mono=True,)
                audio_data = to_torch(audio_reader[:]).squeeze(0)
                # audio_reader.seek(0)
            else:
                audio_data, orig_sr = sf.read(data_path)
                if audio_data.ndim>1:
                    audio_data = np.mean(audio_data,axis=1)
                audio_data = int16_to_float32(float32_to_int16(audio_data)) # can we skip it?
                audio_data = torch.tensor(audio_data).float() # (T)


            if len(audio_data) == 0:
                logger.warning(
                    f"Caught exception {e} when loading audio {data_path}, "
                    f"randomly sample a new audio as replacement"
                )
                return self.process_audio_text_pair(new_index)

            sample = {}

            sample = get_audio_features(
                sample, audio_data, self.max_audio_len, 
                data_truncating='rand_trunc', 
                data_filling='repeatpad',
                audio_cfg=self.audio_cfg
            )


        except Exception as e:
            new_index = random.randint(0, len(self) - 1)
            logger.warning(
                f"Caught exception {e} when loading audio {data_path}, "
                f"randomly sample a new audio as replacement"
            )
            return self.process_audio_text_pair(new_index, other_dataset=other_dataset)


        patch_audio = sample['waveform']

        patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
        patch_video = torch.zeros((3, self.num_frames, self.patch_frame_size, self.patch_frame_size))

        patch_mask = torch.tensor([True])

        patch_type = torch.tensor([2])



        conf = torch.tensor([1.0])

        if 'caption' in type:
            tgt_caption = self.pre_caption(caption, self.max_tgt_length)
            pos_src_caption = self.pre_caption(caption, self.max_src_length)
            # assume the same negative samples as in for images, to test if distribution os video captions are different
            neg_src_caption = self.pre_caption(self.get_negative_caption_audio(caption, gt_objects), self.max_src_length)
            src_item = self.encode_text(" what does the audio describe?")
            tgt_item = self.encode_text(" {}".format(tgt_caption))
            pos_src_item = self.encode_text(' does the audio describe " {} "?'.format(pos_src_caption))
            neg_src_item = self.encode_text(' does the audio describe " {} "?'.format(neg_src_caption))
        else:
            print(type, "not implemented")
            assert NotImplemented
        


        src_item = torch.cat([self.bos_item, src_item, self.eos_item])
        target_item = torch.cat([tgt_item, self.eos_item])
        prev_output_item = torch.cat([self.bos_item, tgt_item])
        pos_src_item = torch.cat([self.bos_item, pos_src_item, self.eos_item]) if type != 'visual_grounding' else None
        neg_src_item = torch.cat([self.bos_item, neg_src_item, self.eos_item]) if type != 'visual_grounding' else None


        example = {
            "id": uniq_id,
            "source": src_item,
            "patch_image": patch_image,
            "patch_video": patch_video,
            "patch_mask": patch_mask,
            "target": target_item,
            "prev_output_tokens": prev_output_item,
            "conf": conf,
            "patch_type": patch_type,
            "patch_audio": patch_audio,
        }

        examples = [example]
        prob = random.random()
        if prob >= 0.5 and self.split == 'train':
            pos_example = example.copy()
            pos_example["source"] = pos_src_item
            pos_example["target"] = torch.cat([self.pos_tgt_item, self.eos_item])
            pos_example["prev_output_tokens"] = torch.cat([self.bos_item, self.pos_tgt_item])
            examples.append(pos_example)
        elif self.split == 'train':
            neg_example = example.copy()
            neg_example["source"] = neg_src_item
            neg_example["target"] = torch.cat([self.neg_tgt_item, self.eos_item])
            neg_example["prev_output_tokens"] = torch.cat([self.bos_item, self.neg_tgt_item])
            examples.append(neg_example)


            

        return examples


    def __getitem__(self, index):
        with data_utils.numpy_seed(self.seed, self.epoch):
            
            extra_samples = []



            
            if self.only_video_data is not None:
                pair_samples = self.process_video_text_pair(index, other_dataset=self.dataset)

            elif self.only_audio_data is not None:
                pair_samples = self.process_audio_text_pair(index, other_dataset=self.dataset)
            else:
                pair_samples = self.process_image_text_pair(index)

            
            if self.split == 'train' and self.dataset.data_cnt % self.image_text_vqa_cnt == 0:
                if self.image_text_vqa_dataset:
                    pair_samples += self.process_image_text_pair(0, other_dataset=self.image_text_vqa_dataset)

            if self.split == 'train' and self.dataset.data_cnt % self.image_text_ground_cnt == 0:
                if self.image_text_ground_dataset:
                    pair_samples += self.process_image_text_pair(0, other_dataset=self.image_text_ground_dataset)


            if self.split == 'train' and self.dataset.data_cnt % self.image_text_cnt == 0:
                if self.image_text_dataset:
                    pair_samples += self.process_image_text_pair(0, other_dataset=self.image_text_dataset)

            

            if self.split == 'train' and self.dataset.data_cnt % self.audio_cnt == 0:
                if self.audio_with_video:
                    extra_samples += self.process_audio_text_pair(0) if self.audio_dataset else []
                else:
                    pair_samples += self.process_audio_text_pair(0) if self.audio_dataset else []

            if self.split == 'train' and self.dataset.data_cnt % self.audio_text_cnt == 0:
                if self.audio_text_dataset:
                    if self.audio_with_video:
                        extra_samples += self.process_audio_text_pair(0, other_dataset=self.audio_text_dataset) 
                    else:
                        pair_samples += self.process_audio_text_pair(0, other_dataset=self.audio_text_dataset) 


            if self.split == 'train' and self.dataset.data_cnt % self.video_cnt == 0:
                extra_samples += self.process_video_text_pair(0) if self.video_dataset else []

            if self.split == 'train' and self.dataset.data_cnt % self.video_text_cnt == 0:
                if self.video_text_dataset:
                    extra_samples += self.process_video_text_pair(0, other_dataset=self.video_text_dataset) 
            

        return pair_samples, extra_samples

    def word_starts(self, source):
        if self.mask_whole_word is not None:
            is_word_start = self.mask_whole_word.gather(0, source)
        else:
            is_word_start = torch.ones(source.size())
        is_word_start[0] = 0
        is_word_start[-1] = 0
        return is_word_start

    def add_whole_word_mask(self, source, p):
        is_word_start = self.word_starts(source)
        num_to_mask = int(math.ceil(is_word_start.float().sum() * p))
        num_inserts = 0
        if num_to_mask == 0:
            return source

        if self.mask_span_distribution is not None:
            lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,))

            # Make sure we have enough to mask
            cum_length = torch.cumsum(lengths, 0)
            while cum_length[-1] < num_to_mask:
                lengths = torch.cat(
                    [
                        lengths,
                        self.mask_span_distribution.sample(sample_shape=(num_to_mask,)),
                    ],
                    dim=0,
                )
                cum_length = torch.cumsum(lengths, 0)

            # Trim to masking budget
            i = 0
            while cum_length[i] < num_to_mask:
                i += 1
            lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1])
            num_to_mask = i + 1
            lengths = lengths[:num_to_mask]

            # Handle 0-length mask (inserts) separately
            lengths = lengths[lengths > 0]
            num_inserts = num_to_mask - lengths.size(0)
            num_to_mask -= num_inserts
            if num_to_mask == 0:
                return self.add_insertion_noise(source, num_inserts / source.size(0))

            assert (lengths > 0).all()
        else:
            lengths = torch.ones((num_to_mask,)).long()
        assert is_word_start[-1] == 0
        word_starts = is_word_start.nonzero(as_tuple=False)
        indices = word_starts[
            torch.randperm(word_starts.size(0))[:num_to_mask]
        ].squeeze(1)
        mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio

        source_length = source.size(0)
        assert source_length - 1 not in indices
        to_keep = torch.ones(source_length, dtype=torch.bool)
        is_word_start[
            -1
        ] = 255  # acts as a long length, so spans don't go over the end of doc
        if self.replace_length == 0:
            to_keep[indices] = 0
        else:
            # keep index, but replace it with [MASK]
            source[indices] = self.mask_idx
            source[indices[mask_random]] = torch.randint(
                4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
            )

        if self.mask_span_distribution is not None:
            assert len(lengths.size()) == 1
            assert lengths.size() == indices.size()
            lengths -= 1
            while indices.size(0) > 0:
                assert lengths.size() == indices.size()
                lengths -= is_word_start[indices + 1].long()
                uncompleted = lengths >= 0
                indices = indices[uncompleted] + 1
                mask_random = mask_random[uncompleted]
                lengths = lengths[uncompleted]
                if self.replace_length != -1:
                    # delete token
                    to_keep[indices] = 0
                else:
                    # keep index, but replace it with [MASK]
                    source[indices] = self.mask_idx
                    source[indices[mask_random]] = torch.randint(
                        4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
                    )
        else:
            # A bit faster when all lengths are 1
            while indices.size(0) > 0:
                uncompleted = is_word_start[indices + 1] == 0
                indices = indices[uncompleted] + 1
                mask_random = mask_random[uncompleted]
                if self.replace_length != -1:
                    # delete token
                    to_keep[indices] = 0
                else:
                    # keep index, but replace it with [MASK]
                    source[indices] = self.mask_idx
                    source[indices[mask_random]] = torch.randint(
                        4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
                    )

                assert source_length - 1 not in indices

        source = source[to_keep]

        if num_inserts > 0:
            source = self.add_insertion_noise(source, num_inserts / source.size(0))

        return source

    def add_insertion_noise(self, tokens, p):
        if p == 0.0:
            return tokens

        num_tokens = len(tokens)
        n = int(math.ceil(num_tokens * p))

        noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1
        noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool)
        noise_mask[noise_indices] = 1
        result = torch.LongTensor(n + len(tokens)).fill_(-1)

        num_random = int(math.ceil(n * self.random_ratio))
        result[noise_indices[num_random:]] = self.mask_idx
        result[noise_indices[:num_random]] = torch.randint(
            low=4, high=len(self.tgt_dict)-self.code_dict_size-self.num_bins, size=(num_random,)
        )

        result[~noise_mask] = tokens

        assert (result >= 0).all()
        return result

    def collater(self, samples, pad_to_length=None):
        """Merge samples of different tasks to form two mini-batches.
        Args:
            samples (List[Tuple]): samples to collate
        Returns:
            Tuple[dict]: two mini-batch containing the data of different tasks
        """

        samples_v1 = []   # containing image-text pairs
        samples_v2 = []   # containing detection data, text data and image data
        for sample_tuple in samples:
            samples_v1 += sample_tuple[0]
            samples_v2 += sample_tuple[1]
        if samples_v2 != []:
            res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
            res_v2 = collate(samples_v2, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
            return res_v1, res_v2
        else:
            res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
            return res_v1