File size: 18,037 Bytes
26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
"""
UnIVAL
"""
from typing import Optional
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.models import register_model, register_model_architecture
from fairseq.modules.transformer_sentence_encoder import init_bert_params
from .unify_transformer import TransformerModel
logger = logging.getLogger(__name__)
@register_model("unival")
class UnIVALModel(TransformerModel):
__jit_unused_properties__ = ["supported_targets"]
def __init__(self, args, encoder, decoder):
super().__init__(args, encoder, decoder)
# We follow BERT's random weight initialization
self.apply(init_bert_params)
self.classification_heads = nn.ModuleDict()
if hasattr(self.encoder, "dictionary"):
self.eos: int = self.encoder.dictionary.eos()
print('unival')
@staticmethod
def add_args(parser):
super(UnIVALModel, UnIVALModel).add_args(parser)
parser.add_argument(
"--pooler-dropout",
type=float,
metavar="D",
help="dropout probability in the masked_lm pooler layers",
)
parser.add_argument(
"--pooler-classifier",
type=str,
choices=['mlp', 'linear'],
help="type of pooler classifier",
)
parser.add_argument(
"--pooler-activation-fn",
choices=utils.get_available_activation_fns(),
help="activation function to use for pooler layer",
)
parser.add_argument(
"--spectral-norm-classification-head",
action="store_true",
help="Apply spectral normalization on the classification head",
)
parser.add_argument(
"--strict",
action="store_false",
default=True,
help="if specified allow strict=False when loading model params",
)
parser.add_argument(
"--adapt_arch_for_init",
action="store_true",
default=True,
help="change UnIVAL arch to be close to init arch",
)
@property
def supported_targets(self):
return {"self"}
def forward(
self,
src_tokens,
src_lengths,
prev_output_tokens,
patch_images: Optional[torch.Tensor] = None,
patch_images_2: Optional[torch.Tensor] = None,
patch_masks: Optional[torch.Tensor] = None,
code_masks: Optional[torch.Tensor] = None,
sample_patch_num: Optional[int] = None,
features_only: bool = False,
classification_head_name: Optional[str] = None,
token_embeddings: Optional[torch.Tensor] = None,
return_all_hiddens: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
patch_videos: Optional[torch.Tensor] = None,
patch_types: Optional[torch.Tensor] = None,
patch_audios: Optional[torch.Tensor] = None,
):
if classification_head_name is not None:
features_only = True
encoder_out = self.encoder(
src_tokens,
src_lengths=src_lengths,
patch_images=patch_images,
patch_masks=patch_masks,
patch_images_2=patch_images_2,
token_embeddings=token_embeddings,
return_all_hiddens=return_all_hiddens,
sample_patch_num=sample_patch_num,
patch_videos=patch_videos,
patch_types=patch_types,
patch_audios=patch_audios,
)
x, extra = self.decoder(
prev_output_tokens,
code_masks=code_masks,
encoder_out=encoder_out,
features_only=features_only,
alignment_layer=alignment_layer,
alignment_heads=alignment_heads,
src_lengths=src_lengths,
return_all_hiddens=return_all_hiddens,
)
pad = self.encoder.padding_idx
if classification_head_name is not None:
prev_lengths = prev_output_tokens.ne(pad).sum(1)
gather_index = prev_lengths[:, None, None].expand(x.size(0), 1, x.size(2)) - 1
sentence_representation = x.gather(1, gather_index).squeeze()
if self.classification_heads[classification_head_name].use_two_images:
hidden_size = sentence_representation.size(1)
sentence_representation = sentence_representation.view(-1, hidden_size * 2)
for k, head in self.classification_heads.items():
# for torch script only supports iteration
if k == classification_head_name:
x = head(sentence_representation)
break
return x, extra
def register_embedding_tokens(self, ans2label_dict, src_dict, bpe):
"""Register embedding tokens"""
logger.info("Registering embedding tokens")
self.ans_tensor_list = []
for i in range(len(ans2label_dict)):
ans = src_dict[-len(ans2label_dict)+i]
ans = ans[5:-1].replace('_', ' ')
ans_tensor = src_dict.encode_line(
line=bpe.encode(' {}'.format(ans.lower())),
add_if_not_exist=False,
append_eos=False
).long()
self.ans_tensor_list.append(ans_tensor)
def register_classification_head(
self, name, num_classes=None, inner_dim=None, use_two_images=False, **kwargs
):
"""Register a classification head."""
logger.info("Registering classification head: {0}".format(name))
if name in self.classification_heads:
prev_num_classes = self.classification_heads[name].out_proj.out_features
prev_inner_dim = self.classification_heads[name].dense.out_features
if num_classes != prev_num_classes or inner_dim != prev_inner_dim:
logger.warning(
're-registering head "{}" with num_classes {} (prev: {}) '
"and inner_dim {} (prev: {})".format(
name, num_classes, prev_num_classes, inner_dim, prev_inner_dim
)
)
self.classification_heads[name] = UnIVALClassificationHead(
input_dim=self.args.encoder_embed_dim,
inner_dim=inner_dim or self.args.encoder_embed_dim,
num_classes=num_classes,
activation_fn=self.args.pooler_activation_fn,
pooler_dropout=self.args.pooler_dropout,
pooler_classifier=self.args.pooler_classifier,
use_two_images=use_two_images,
do_spectral_norm=getattr(
self.args, "spectral_norm_classification_head", False
),
)
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
prefix = name + "." if name != "" else ""
current_head_names = (
[]
if not hasattr(self, "classification_heads")
else self.classification_heads.keys()
)
# Handle new classification heads present in the state dict.
keys_to_delete = []
for k in state_dict.keys():
if not k.startswith(prefix + "classification_heads."):
continue
head_name = k[len(prefix + "classification_heads.") :].split(".")[0]
num_classes = state_dict[
prefix + "classification_heads." + head_name + ".out_proj.weight"
].size(0)
inner_dim = state_dict[
prefix + "classification_heads." + head_name + ".dense.weight"
].size(0)
if getattr(self.args, "load_checkpoint_heads", False):
if head_name not in current_head_names:
self.register_classification_head(head_name, num_classes, inner_dim)
else:
if head_name not in current_head_names:
logger.warning(
"deleting classification head ({}) from checkpoint "
"not present in current model: {}".format(head_name, k)
)
keys_to_delete.append(k)
elif (
num_classes
!= self.classification_heads[head_name].out_proj.out_features
or inner_dim
!= self.classification_heads[head_name].dense.out_features
):
logger.warning(
"deleting classification head ({}) from checkpoint "
"with different dimensions than current model: {}".format(
head_name, k
)
)
keys_to_delete.append(k)
for k in keys_to_delete:
del state_dict[k]
def truncate_emb(key):
if key in state_dict:
state_dict[key] = state_dict[key][:-1, :]
# When finetuning on translation task, remove last row of
# embedding matrix that corresponds to mask_idx token.
loaded_dict_size = state_dict["encoder.embed_tokens.weight"].size(0)
if (
loaded_dict_size == len(self.encoder.dictionary) + 1
and "<mask>" not in self.encoder.dictionary
):
truncate_emb("encoder.embed_tokens.weight")
truncate_emb("decoder.embed_tokens.weight")
truncate_emb("encoder.output_projection.weight")
truncate_emb("decoder.output_projection.weight")
if loaded_dict_size < len(self.encoder.dictionary):
num_langids_to_add = len(self.encoder.dictionary) - loaded_dict_size
embed_dim = state_dict["encoder.embed_tokens.weight"].size(1)
new_lang_embed_to_add = torch.zeros(num_langids_to_add, embed_dim)
if getattr(self, "ans_tensor_list", None):
assert len(new_lang_embed_to_add) == len(self.ans_tensor_list)
for i, ans_tensor in enumerate(self.ans_tensor_list):
ans_embed = F.embedding(ans_tensor, state_dict["encoder.embed_tokens.weight"])
ans_embed = ans_embed.sum(0) / ans_embed.size(0)
new_lang_embed_to_add[i] = ans_embed
else:
nn.init.normal_(new_lang_embed_to_add, mean=0, std=embed_dim ** -0.5)
new_lang_embed_to_add = new_lang_embed_to_add.to(
dtype=state_dict["encoder.embed_tokens.weight"].dtype,
)
state_dict["encoder.embed_tokens.weight"] = torch.cat(
[state_dict["encoder.embed_tokens.weight"], new_lang_embed_to_add]
)
state_dict["decoder.embed_tokens.weight"] = torch.cat(
[state_dict["decoder.embed_tokens.weight"], new_lang_embed_to_add]
)
state_dict["decoder.output_projection.weight"] = torch.cat(
[state_dict["decoder.output_projection.weight"], new_lang_embed_to_add]
)
# Copy any newly-added classification heads into the state dict
# with their current weights.
if hasattr(self, "classification_heads"):
cur_state = self.classification_heads.state_dict()
for k, v in cur_state.items():
if prefix + "classification_heads." + k not in state_dict:
logger.info("Overwriting " + prefix + "classification_heads." + k)
state_dict[prefix + "classification_heads." + k] = v
class UnIVALClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim,
inner_dim,
num_classes,
activation_fn,
pooler_dropout,
pooler_classifier,
use_two_images=False,
do_spectral_norm=False,
):
super().__init__()
self.pooler_classifier = pooler_classifier
self.use_two_images = use_two_images
input_dim = input_dim * 2 if use_two_images else input_dim
if pooler_classifier == "mlp":
self.dense = nn.Linear(input_dim, inner_dim)
self.activation_fn = utils.get_activation_fn(activation_fn)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
elif pooler_classifier == "linear":
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(input_dim, num_classes)
else:
raise NotImplementedError
if do_spectral_norm:
self.out_proj = torch.nn.utils.spectral_norm(self.out_proj)
def forward(self, features, **kwargs):
if self.pooler_classifier == 'mlp':
x = features
x = self.dropout(x)
x = self.dense(x)
x = self.activation_fn(x)
x = self.dropout(x)
x = self.out_proj(x)
elif self.pooler_classifier == 'linear':
x = features
x = self.dropout(x)
x = self.out_proj(x)
else:
raise NotImplementedError
return x
@register_model_architecture("unival", "unival_large")
def unival_large_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 1024)
args.encoder_layers = getattr(args, "encoder_layers", 12)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.relu_dropout = getattr(args, "relu_dropout", 0.0)
args.dropout = getattr(args, "dropout", 0.0)
args.max_target_positions = getattr(args, "max_target_positions", 1024)
args.max_source_positions = getattr(args, "max_source_positions", 1024)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", True
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", True)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
args.layernorm_embedding = getattr(args, "layernorm_embedding", True)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")
args.pooler_dropout = getattr(args, "pooler_dropout", 0.0)
args.pooler_classifier = getattr(args, "pooler_classifier", "mlp")
args.resnet_drop_path_rate = getattr(args, "resnet_drop_path_rate", 0.0)
args.encoder_drop_path_rate = getattr(args, "encoder_drop_path_rate", 0.0)
args.decoder_drop_path_rate = getattr(args, "decoder_drop_path_rate", 0.0)
args.resnet_type = getattr(args, "resnet_type", "resnet152")
args.token_bucket_size = getattr(args, "token_bucket_size", 256)
args.image_bucket_size = getattr(args, "image_bucket_size", 42)
args.freeze_encoder_embedding = getattr(args, "freeze_encoder_embedding", False)
args.freeze_decoder_embedding = getattr(args, "freeze_decoder_embedding", False)
args.add_type_embedding = getattr(args, "add_type_embedding", True)
args.attn_scale_factor = getattr(args, "attn_scale_factor", 2)
args.code_image_size = getattr(args, "code_image_size", 128)
args.patch_layernorm_embedding = getattr(args, "patch_layernorm_embedding", True)
args.code_layernorm_embedding = getattr(args, "code_layernorm_embedding", True)
args.entangle_position_embedding = getattr(args, "entangle_position_embedding", False)
args.disable_entangle = getattr(args, "disable_entangle", False)
args.sync_bn = getattr(args, "sync_bn", False)
args.scale_attn = getattr(args, "scale_attn", False)
args.scale_fc = getattr(args, "scale_fc", False)
args.scale_heads = getattr(args, "scale_heads", False)
args.scale_resids = getattr(args, "scale_resids", False)
args.orig_patch_image_size = getattr(args, "orig_patch_image_size", 256)
@register_model_architecture("unival", "unival_base")
def unival_base_architecture(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 768)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12)
args.resnet_type = getattr(args, "resnet_type", "resnet101")
unival_large_architecture(args)
|