File size: 5,140 Bytes
26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
#!/usr/bin/env bash
# The port for communication. Note that if you want to run multiple tasks on the same machine,
# you need to specify different port numbers.
# Number of GPUs per GPU worker
export GPUS_PER_NODE=8
# Number of GPU workers, for single-worker training, please set to 1
export NUM_NODES=$SLURM_NNODES
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr
# The port for communication
export MASTER_PORT=12350
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=$SLURM_NODEID
echo "MASTER_ADDR: $MASTER_ADDR"
echo "RANK :$RANK"
echo "NUM_NODES :$NUM_NODES"
echo "GPUS_PER_NODE :$GPUS_PER_NODE"
export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/
echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH"
num_workers=0
ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival
base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data
base_log_dir=/work/NAT/gda2204/mshukor/logs
bpe_dir=${ofa_dir}/utils/BPE
user_dir=${ofa_dir}/ofa_module
selected_cols=0,4,2,3
image_encoder_name=resnet #vit_base_patch16_224
zero_shot=''
new_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs
patch_image_size=512
# sample_patch_num='--sample-patch-num=784' # ''
sample_patch_num=''
# exp_name=avg_rata_l0_7refcapsnlivqa
# new_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs
# path=/lus/scratch/NAT/gda2204/SHARED/logs/ofa/pretrained_models/average_models/avg_rata_l0_7refcapsnlivqa.pt
model_name=avg_postratafuse
path=/lus/scratch/NAT/gda2204/SHARED/logs/ofa/pretrained_models/average_models/avg_postratafuse.pt
zero_shot='--zero-shot'
acc_thresh='0.4,0.5,0.6,0.7,0.8,0.9'
metric=map
min_area_size=100000 # max 1000000
max_area_size=30000
echo ${path}
result_path=${new_base_log_dir}/ofa/results/refcocoplus/${exp_name}
mkdir ${result_path}
data=${base_data_dir}/ofa/refcocoplus_data/refcocoplus_val.tsv
split='refcocoplus_val'
python3 -m torch.distributed.launch \
--nnodes=${NUM_NODES} \
--nproc_per_node=${GPUS_PER_NODE} \
--master_port=${MASTER_PORT} \
--node_rank=${RANK} \
--master_addr=${MASTER_ADDR} \
--use_env ${ofa_dir}/evaluate.py \
${data} \
--path=${path} \
--user-dir=${user_dir} \
--task=refcoco \
--batch-size=16 \
--log-format=simple --log-interval=10 \
--seed=7 \
--gen-subset=${split} \
--results-path=${result_path} \
--beam=5 \
--min-len=4 \
--max-len-a=0 \
--max-len-b=4 \
--no-repeat-ngram-size=3 \
--fp16 \
--num-workers=0 \
--model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"selected_cols\":\"${selected_cols}\"}" \
--acc-thresh=${acc_thresh} \
--metric=${metric} \
${zero_shot} \
--min-area-size=${min_area_size} \
--max-area-size=${max_area_size} \
--patch-image-size=${patch_image_size} \
${sample_patch_num}
data=${base_data_dir}/ofa/refcocoplus_data/refcocoplus_testA.tsv
split='refcocoplus_testA'
python3 -m torch.distributed.launch \
--nnodes=${NUM_NODES} \
--nproc_per_node=${GPUS_PER_NODE} \
--master_port=${MASTER_PORT} \
--node_rank=${RANK} \
--master_addr=${MASTER_ADDR} \
--use_env ${ofa_dir}/evaluate.py \
${data} \
--path=${path} \
--user-dir=${user_dir} \
--task=refcoco \
--batch-size=16 \
--log-format=simple --log-interval=10 \
--seed=7 \
--gen-subset=${split} \
--results-path=${result_path} \
--beam=5 \
--min-len=4 \
--max-len-a=0 \
--max-len-b=4 \
--no-repeat-ngram-size=3 \
--fp16 \
--num-workers=0 \
--model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"selected_cols\":\"${selected_cols}\"}" \
--acc-thresh=${acc_thresh} \
--metric=${metric} \
${zero_shot} \
--min-area-size=${min_area_size} \
--max-area-size=${max_area_size} \
--patch-image-size=${patch_image_size} \
${sample_patch_num}
data=${base_data_dir}/ofa/refcocoplus_data/refcocoplus_testB.tsv
split='refcocoplus_testB'
python3 -m torch.distributed.launch \
--nnodes=${NUM_NODES} \
--nproc_per_node=${GPUS_PER_NODE} \
--master_port=${MASTER_PORT} \
--node_rank=${RANK} \
--master_addr=${MASTER_ADDR} \
--use_env ${ofa_dir}/evaluate.py \
${data} \
--path=${path} \
--user-dir=${user_dir} \
--task=refcoco \
--batch-size=16 \
--log-format=simple --log-interval=10 \
--seed=7 \
--gen-subset=${split} \
--results-path=${result_path} \
--beam=5 \
--min-len=4 \
--max-len-a=0 \
--max-len-b=4 \
--no-repeat-ngram-size=3 \
--fp16 \
--num-workers=0 \
--model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"selected_cols\":\"${selected_cols}\"}" \
--acc-thresh=${acc_thresh} \
--metric=${metric} \
${zero_shot} \
--min-area-size=${min_area_size} \
--max-area-size=${max_area_size} \
--patch-image-size=${patch_image_size} \
${sample_patch_num}
|