File size: 7,954 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

# Number of GPUs per GPU worker
export GPUS_PER_NODE=8
# Number of GPU workers, for single-worker training, please set to 1
export NUM_NODES=$SLURM_NNODES
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr

# The port for communication
export MASTER_PORT=12350
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=$SLURM_NODEID

echo "MASTER_ADDR: $MASTER_ADDR"
echo "RANK :$RANK"
echo "NUM_NODES :$NUM_NODES"
echo "GPUS_PER_NODE :$GPUS_PER_NODE"

export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/

echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH"

num_workers=0


ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival
base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data
base_log_dir=/work/NAT/gda2204/mshukor/logs


exp_name=unival_vqa


image_dir=${base_data_dir}
data_dir=${base_data_dir}/ofa/vqa_data
# data=${data_dir}/vqa_train.tsv,${data_dir}/vqa_val.tsv
# Note: If you have shuffled the data in advance, please uncomment the line below.
data=${data_dir}/vqa_train_1.tsv,${data_dir}/vqa_train_2.tsv,${data_dir}/vqa_train_3.tsv,${data_dir}/vqa_train_4.tsv,${data_dir}/vqa_train_5.tsv,${data_dir}/vqa_train_6.tsv,${data_dir}/vqa_train_7.tsv,${data_dir}/vqa_train_8.tsv,${data_dir}/vqa_train_9.tsv,${data_dir}/vqa_train_10.tsv,${data_dir}/vqa_val.tsv
ans2label_file=${base_data_dir}/ofa/vqa_data/trainval_ans2label.pkl


selected_cols=0,5,2,3,4



save_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs
save_dir=${save_base_log_dir}/ofa/checkpoints/vqa/${exp_name}

log_dir=${save_dir}

mkdir -p $log_dir $save_dir

restore_file=${base_log_dir}/ofa/checkpoints/pretrain/unival_s2_hs/checkpoint1.pt


lr=1e-4



bpe_dir=${ofa_dir}/utils/BPE
user_dir=${ofa_dir}/ofa_module



task=vqa_gen
arch=unival_base


criterion=adjust_label_smoothed_cross_entropy
label_smoothing=0.1
batch_size=16
update_freq=1
resnet_drop_path_rate=0.0
encoder_drop_path_rate=0.1
decoder_drop_path_rate=0.1
dropout=0.1
attention_dropout=0.0
max_src_length=80
max_object_length=30
max_tgt_length=30
num_bins=1000

uses_ema="--uses-ema"
store_ema="--store-ema"
ema_fp32="--ema-fp32"
ema_decay=0.9999
ema_start_update=0

# Specify the inference type in validation after each fine-tuning epoch
# As mentioned in the readme, you can choose from allcand or beamsearch evaluation, default to allcand
val_inference_type=beamsearch

# Specify whether to activate unconstrained VQA finetuning, which does not use a pre-defined candidate answer set
# If --unconstrained-training is acitvated, --ans2label-file will **not be used even if it is specified**
# Meanwhile, --val-inference-type must be set to **beamsearch**
# By default, we follow the constrained finetuning as we mentioned in OFA paper, the candidate answer set shall be specified by --ans2label-file
# For more details about this option, please refer to issue #123 and PR #124
unconstrained_training_flag=""
# unconstrained_training_flag="--unconstrained-training"





save_interval_updates=0

###
image_encoder_name=timm_resnet #vit_base_patch16_224
patch_image_size=480
resnet_type=resnet101

resnet_model_path=${base_log_dir}/pretrained_models/resnet101-5d3b4d8f.pth

# video
video_encoder_name=all_resnext101
patch_frame_size=384
video_model_path=${base_log_dir}/pretrained_models/3dcnn/resnext-101-kinetics.pth #${base_log_dir}/pretrained_models/TimeSformer_divST_8x32_224_K600.pyth
num_frames=4


sample_patch_num='--sample-patch-num=784' # ''

eval_args='--eval-args={"beam":5,"unnormalized":true,"temperature":1.0,"stop_on_max_len":true}'

validate_interval_updates=2000
save_interval_updates=0


for max_epoch in {20,}; do
  echo "max_epoch "${max_epoch}
  for warmup_ratio in {0.04,}; do
    echo "warmup_updates "${warmup_updates}  
    for lr in {$lr,}; do
      echo "lr "${lr}
      for patch_image_size in {$patch_image_size,}; do
        echo "patch_image_size "${patch_image_size}

        log_file=${log_dir}/${max_epoch}"_"${warmup_ratio}"_"${lr}"_"${patch_image_size}"_rank"${RANK}".log"
        save_path=${save_dir}/${max_epoch}"_"${warmup_ratio}"_"${lr}"_"${patch_image_size}
        mkdir -p $save_path

        python3 -m torch.distributed.launch \
            --nnodes=${NUM_NODES} \
            --nproc_per_node=${GPUS_PER_NODE} \
            --master_port=${MASTER_PORT} \
            --node_rank=${RANK} \
            --master_addr=${MASTER_ADDR} \
            --use_env ${ofa_dir}/train.py \
            ${data} \
            --selected-cols=${selected_cols} \
            --bpe-dir=${bpe_dir} \
            --user-dir=${user_dir} \
            --restore-file=${restore_file} \
            --save-dir=${save_path} \
            --task=${task} \
            --arch=${arch} \
            --criterion=${criterion} \
            --label-smoothing=${label_smoothing} \
            --batch-size=${batch_size} \
            --update-freq=${update_freq} \
            --encoder-normalize-before \
            --decoder-normalize-before \
            --share-decoder-input-output-embed \
            --share-all-embeddings \
            --layernorm-embedding \
            --patch-layernorm-embedding \
            --code-layernorm-embedding \
            --resnet-drop-path-rate=${resnet_drop_path_rate} \
            --encoder-drop-path-rate=${encoder_drop_path_rate} \
            --decoder-drop-path-rate=${decoder_drop_path_rate} \
            --dropout=${dropout} \
            --attention-dropout=${attention_dropout} \
            --weight-decay=0.01 \
            --optimizer=adam \
            --adam-betas="(0.9,0.999)" \
            --adam-eps=1e-08 \
            --clip-norm=1.0 \
            --lr-scheduler=polynomial_decay \
            --lr=${lr} \
            --max-epoch=${max_epoch} \
            --warmup-ratio=${warmup_ratio} \
            --log-format=simple \
            --log-interval=10 \
            --fixed-validation-seed=7 \
            --keep-best-checkpoints=1 \
            --no-epoch-checkpoints \
            --save-interval=1 --validate-interval=1 \
            --save-interval-updates=${save_interval_updates} --validate-interval-updates=${validate_interval_updates} \
            --best-checkpoint-metric=vqa_score --maximize-best-checkpoint-metric \
            --max-src-length=${max_src_length} \
            --max-object-length=${max_object_length} \
            --max-tgt-length=${max_tgt_length} \
            --find-unused-parameters \
            --freeze-encoder-embedding \
            --freeze-decoder-embedding \
            ${unconstrained_training_flag} \
            --ans2label-file=${ans2label_file} \
            --valid-batch-size=20 \
            --add-type-embedding \
            --scale-attn \
            --scale-fc \
            --scale-heads \
            --disable-entangle \
            --num-bins=${num_bins} \
            --patch-image-size=${patch_image_size} \
            --prompt-type=prev_output \
            --fp16 \
            --fp16-scale-window=512 \
            ${uses_ema} \
            ${store_ema} \
            ${ema_fp32} \
            --ema-decay=${ema_decay} \
            --ema-start-update=${ema_start_update} \
            --val-inference-type=${val_inference_type} \
            --num-workers=0 \
            --image-encoder-name=${image_encoder_name} \
            --image-dir=${image_dir} \
            --video-encoder-name=${video_encoder_name} \
            --video-model-path=${video_model_path} \
            --patch-frame-size=${patch_frame_size} \
            ${sample_patch_num} \
            ${eval_args} \
            --no-epoch-checkpoints \
            --resnet-type=${resnet_type} \
            --resnet-model-path=${resnet_model_path} \
            --reset-dataloader --reset-meters --reset-optimizer 
      done
    done
  done
done