File size: 8,650 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright 2022 The OFA-Sys Team. 
# All rights reserved.
# This source code is licensed under the Apache 2.0 license 
# found in the LICENSE file in the root directory.

import json
import logging
import math
from dataclasses import dataclass, field
from typing import Optional

import torch
from fairseq import metrics
from fairseq.tasks import register_task

from tasks.ofa_task import OFAConfig, OFATask
from data.mm_data.snli_ve_dataset import SnliVeDataset
from data.file_dataset import FileDataset
from data import data_utils
from utils.trie import Trie

logger = logging.getLogger(__name__)


@dataclass
class SnliVeConfig(OFAConfig):
    ans2label_dict: Optional[str] = field(
        default='{"no": 0, "yes":1, "maybe": 2}',
        metadata={"help": 'answer to label dict'},
    )
    add_caption: bool = field(
        default=False,
        metadata={"help": "add caption to encoder"},
    )
    valid_batch_size: int = field(
        default=20,
        metadata={"help": "valid batch size per step"},
    )
    prompt_type: Optional[str] = field(
        default=None,
        metadata={"help": "prompt_type"},
    )


@register_task("snli_ve", dataclass=SnliVeConfig)
class SnliVeTask(OFATask):
    def __init__(self, cfg: SnliVeConfig, src_dict, tgt_dict):
        super().__init__(cfg, src_dict, tgt_dict)
        self.ans2label_dict = json.loads(self.cfg.ans2label_dict)

    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        paths = self.cfg.data.split(',')
        assert len(paths) > 0

        if split == 'train':
            file_path = paths[(epoch - 1) % (len(paths) - 1)]
        else:
            file_path = paths[-1]
        dataset = FileDataset(file_path, self.cfg.selected_cols)

        self.datasets[split] = SnliVeDataset(
            split,
            dataset,
            self.bpe,
            self.src_dict,
            self.tgt_dict,
            max_src_length=self.cfg.max_src_length,
            max_tgt_length=self.cfg.max_tgt_length,
            patch_image_size=self.cfg.patch_image_size,
            add_caption=self.cfg.add_caption,
            constraint_trie=self.constraint_trie,
            imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std,
            prompt_type=self.cfg.prompt_type
        )

    def build_model(self, cfg):
        model = super().build_model(cfg)
        answer_item_list = []
        self.index2ans = {}
        self.constraint_trie = Trie(self.tgt_dict.eos())
        for i, answer in enumerate(self.ans2label_dict.keys()):
            answer_item = self.tgt_dict.encode_line(
                line=self.bpe.encode(' ' + answer),
                add_if_not_exist=False,
                append_eos=False
            ).long()
            answer_item_list.append(answer_item)
            self.index2ans[i] = answer
            self.constraint_trie.insert([self.tgt_dict.bos()] + answer_item.tolist() + [self.tgt_dict.eos()])

        constraint_mask_list = []
        for answer_item in answer_item_list:
            constraint_mask = torch.zeros((len(answer_item)+1, len(self.tgt_dict))).bool()
            for i in range(len(answer_item)+1):
                constraint_prefix_token = [self.src_dict.bos()] + answer_item[:i].tolist()
                constraint_nodes = self.constraint_trie.get_next_layer(constraint_prefix_token)
                constraint_mask[i][constraint_nodes] = True
            constraint_mask_list.append(constraint_mask)

        self.valid_answers_list = []
        self.valid_constraint_masks_list = []
        for i in range(0, len(answer_item_list), self.cfg.valid_batch_size):
            self.valid_answers_list += [answer_item_list[i:i+self.cfg.valid_batch_size]]
            self.valid_constraint_masks_list += [constraint_mask_list[i:i+self.cfg.valid_batch_size]]

        return model

    def build_generator(
        self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None,
    ):
        seq_generator = super().build_generator(models, args, seq_gen_cls, extra_gen_cls_kwargs, prefix_allowed_tokens_fn)
        seq_generator.constraint_trie = self.constraint_trie

        return seq_generator

    def valid_step(self, sample, model, criterion, **extra_kwargs):
        loss, sample_size, logging_output = super().valid_step(sample, model, criterion)

        model.eval()
        with torch.no_grad():
            encoder_out = model.encoder(
                sample["net_input"]["src_tokens"],
                src_lengths=sample["net_input"]["src_lengths"],
                patch_images=sample["net_input"]["patch_images"],
                patch_masks=sample["net_input"]["patch_masks"]
            )
            device = sample["net_input"]["src_tokens"].device
            eos_item = torch.tensor([self.src_dict.eos()])
            pad = self.src_dict.pad()
            valid_result = []
            for valid_answers, valid_constraint_masks in zip(self.valid_answers_list, self.valid_constraint_masks_list):
                valid_size = len(valid_answers)
                valid_tgt_items = [
                    torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item])
                    for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
                ]
                valid_prev_items = [
                    torch.cat([torch.tensor(decoder_prompt), valid_answer])
                    for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
                ]
                valid_constraint_mask_items = [
                    torch.cat([torch.zeros(len(decoder_prompt)-1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask], dim=0)
                    for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks
                ]
                valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad, left_pad=False).to(device)
                valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad, left_pad=False).to(device)
                valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad, left_pad=False).to(device)

                new_encoder_out = {}
                new_encoder_out["encoder_out"] = [
                    encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1)
                ]
                new_encoder_out["encoder_padding_mask"] = [
                    encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0)
                ]
                new_encoder_out["position_embeddings"] = [
                    encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0)
                ]

                decoder_out = model.decoder(valid_prev_output, encoder_out=new_encoder_out)
                decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf)
                lprobs = model.get_normalized_probs(decoder_out, log_probs=True)
                scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1)
                scores = scores.masked_fill(valid_tgt.eq(self.tgt_dict.pad()), 0)
                scores = scores.masked_fill((~valid_constraint_masks).all(2), 0)
                scores = scores.sum(1)
                scores = scores.view(-1, valid_size)
                valid_result.append(scores)

        valid_result = torch.cat(valid_result, dim=-1)
        predicts = valid_result.argmax(1).tolist()
        hyps = [self.index2ans[predict_index] for predict_index in predicts]
        scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
        logging_output["_snli_score_sum"] = sum(scores)
        logging_output["_snli_cnt"] = len(scores)

        return loss, sample_size, logging_output

    def reduce_metrics(self, logging_outputs, criterion):
        super().reduce_metrics(logging_outputs, criterion)

        def sum_logs(key):
            import torch
            result = sum(log.get(key, 0) for log in logging_outputs)
            if torch.is_tensor(result):
                result = result.cpu()
            return result

        def compute_score(meters):
            score = meters["_snli_score_sum"].sum / meters["_snli_cnt"].sum
            score = score if isinstance(score, float) else score.item()
            return round(score, 4)

        if sum_logs("_snli_cnt") > 0:
            metrics.log_scalar("_snli_score_sum", sum_logs("_snli_score_sum"))
            metrics.log_scalar("_snli_cnt", sum_logs("_snli_cnt"))
            metrics.log_derived("snli_score", compute_score)