File size: 13,693 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Copyright 2022 The OFA-Sys Team. 
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.

from dataclasses import dataclass, field
import json
import logging
import os
import math
from typing import Optional
from fairseq.tasks import register_task
from fairseq.data import FairseqDataset, iterators

from tasks.ofa_task import OFATask, OFAConfig
from data.pretrain_data.unify_dataset import UnifyDataset
from data.file_dataset import FileDataset

logger = logging.getLogger(__name__)

 
@dataclass
class UnifyConfig(OFAConfig):
    max_image_size: int = field(
        default=512, metadata={"help": ""}
    )
    neg_sample_dir: Optional[str] = field(
        default=None,
        metadata={"help": "negative sample directory, which contains captions (taken from all image-text pairs), "
                          "answers (taken from VQA), "
                          "objects (taken form OpenImages) "},
    )
    code_image_size: int = field(
        default=128, metadata={"help": "the resolution of the generated image in the image infilling task"}
    )

    pretrain_seed: int = field(
        default=7,
        metadata={"help": "pretrain seed"},
    )

    mask_ratio: float = field(
        default=0.3,
        metadata={"help": "fraction of words/subwords that will be masked"},
    )
    random_ratio: float = field(
        default=0.0,
        metadata={"help": "instead of using [MASK], use random token this often"},
    )
    keep_ratio: float = field(
        default=0.0,
        metadata={"help": "instead of using [MASK], keep original token this often"},
    )
    mask_length: str = field(
        default="span-poisson",
        metadata={"help": "mask length to choose ['subword', 'word', 'span-poisson']"},
    )
    poisson_lambda: float = field(
        default=3.0,
        metadata={"help": "randomly shuffle sentences for this proportion of inputs"},
    )
    replace_length: int = field(
        default=1,
        metadata={"help": "when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)"},
    )


    neg_captions_video: Optional[str] = field(
        default=None,
        metadata={"help": "negative sample file .txt, which contains captions (taken from all video-text pairs), "},
    )

    neg_captions_audio: Optional[str] = field(
        default=None,
        metadata={"help": "negative sample file .txt, which contains captions (taken from all video-text pairs), "},
    )

    audio_selected_cols: Optional[str] = field(
        default=None,
        metadata={"help": "detection data selected cols"},
    )

    audio_data: Optional[str] = field(
        default=None,
        metadata={"help": "detection data"},
    )
    audio_cnt: int = field(
        default=2,
        metadata={"help": "to control the ratio of video examples in the batch"},
    )

    video_selected_cols: Optional[str] = field(
        default=None,
        metadata={"help": "video data selected cols"},
    )

    video_data: Optional[str] = field(
        default=None,
        metadata={"help": "video data"},
    )

    video_cnt: int = field(
        default=2,
        metadata={"help": "to control the ratio of video examples in the batch"},
    )

    image_text_data: Optional[str] = field(
        default=None,
        metadata={"help": "cc12m data"},
    )

    image_text_cnt: int = field(
        default=2,
        metadata={"help": "to control the ratio of image-text examples in the batch"},
    )

    other_data_cnt: int = field(
        default=8,
        metadata={"help": "to control the ratio of image-text examples in the batch"},
    )


    init_image_text_data: Optional[str] = field(
        default=None,
        metadata={"help": "init data"},
    )

    init_dataset_epoch: int = field(
        default=3,
        metadata={"help": "to witch from the init dataset"},
    )

    init_text_data: Optional[str] = field(
        default=None,
        metadata={"help": "init data"},
    )


    image_text_vqa_data: Optional[str] = field(
        default=None,
        metadata={"help": "vqa data"},
    )

    image_text_vqa_cnt: int = field(
        default=2,
        metadata={"help": "to control the ratio of image-text examples in the batch"},
    )


    image_text_ground_data: Optional[str] = field(
        default=None,
        metadata={"help": "cc12m data"},
    )

    image_text_ground_cnt: int = field(
        default=2,
        metadata={"help": "to control the ratio of image-text examples in the batch"},
    )

    only_video_data: Optional[str] = field(
        default=None,
        metadata={"help": "only video data"},
    )
    only_audio_data: Optional[str] = field(
        default=None,
        metadata={"help": "only video data"},
    )

    video_text_data: Optional[str] = field(
        default=None,
        metadata={"help": "cc12m data"},
    )

    video_text_cnt: int = field(
        default=2,
        metadata={"help": "to control the ratio of image-text examples in the batch"},
    )

    audio_text_data: Optional[str] = field(
        default=None,
        metadata={"help": "cc12m data"},
    )

    audio_text_cnt: int = field(
        default=2,
        metadata={"help": "to control the ratio of image-text examples in the batch"},
    )

    audio_with_video: bool = field(
        default=False,
        metadata={"help": "audio_with_video"},
    )


@register_task("unify_task", dataclass=UnifyConfig)
class UnifyTask(OFATask):
    def __init__(self, cfg: UnifyConfig, src_dict, tgt_dict):
        super().__init__(cfg, src_dict, tgt_dict)

        self.type2ans_dict = json.load(open(os.path.join(self.cfg.neg_sample_dir, 'type2ans.json')))
        self.ans2type_dict = {}
        for type, answer_list in self.type2ans_dict.items():
            if type == 'other':
                continue
            for answer in answer_list:
                self.ans2type_dict[answer] = type

        self.all_object_list = [
            row.strip() for row in open(os.path.join(self.cfg.neg_sample_dir, 'object.txt')) if row.strip() != ''
        ]
        neg_captions_path = os.path.join(self.cfg.neg_sample_dir, 'all_captions.txt')
        self.all_caption_list = [
            row.strip() for row in open(os.path.join(neg_captions_path)) if row.strip() != ''
        ]

        if self.cfg.neg_captions_video is not None:
            neg_captions_video = self.cfg.neg_captions_video
        else:
            neg_captions_video = neg_captions_path

        if self.cfg.neg_captions_audio is not None:
            neg_captions_audio = self.cfg.neg_captions_audio
        else:
            neg_captions_audio = neg_captions_path

        print("Reading negative video captions:", neg_captions_video)
        self.all_caption_video_list = [
            row.strip() for row in open(os.path.join(neg_captions_video)) if row.strip() != ''
        ]
        print("Reading negative audio captions:", neg_captions_audio)
        self.all_caption_audio_list = [
            row.strip() for row in open(os.path.join(neg_captions_audio)) if row.strip() != ''
        ]



        # audio 
        self.audio_dataset = None 
        self.video_dataset = None
        self.image_text_dataset = None 

        self.video_text_dataset = None

        self.audio_text_dataset = None

        self.init_image_text_dataset = None

        self.init_text_dataset = None

        self.image_text_ground_dataset = None 
        self.image_text_vqa_dataset = None 
        


        if self.cfg.audio_data is not None:
            print("Load audio data")
            self.audio_dataset = FileDataset(self.cfg.audio_data, self.cfg.audio_selected_cols)

        if self.cfg.video_data is not None:
            print("Load video data")
            self.video_dataset = FileDataset(self.cfg.video_data, self.cfg.video_selected_cols)

        if self.cfg.image_text_data is not None:
            print("Load Image Text data")
            self.image_text_dataset = FileDataset(self.cfg.image_text_data, self.cfg.selected_cols)

        if self.cfg.init_image_text_data is not None:
            print("Load Init Image Text data")
            self.init_image_text_dataset = FileDataset(self.cfg.init_image_text_data, self.cfg.selected_cols)

        if self.cfg.init_text_data is not None:
            print("Load Init Text data")
            self.init_text_dataset = FileDataset(self.cfg.init_text_data, self.cfg.text_selected_cols)

        if self.cfg.image_text_vqa_data is not None:
            print("Load Image Text data")
            self.image_text_vqa_dataset = FileDataset(self.cfg.image_text_vqa_data, self.cfg.selected_cols)

        if self.cfg.image_text_ground_data is not None:
            print("Load Image Text data")
            self.image_text_ground_dataset = FileDataset(self.cfg.image_text_ground_data, self.cfg.selected_cols)

        
        if self.cfg.video_text_data is not None:
            print("Load Video Text data")
            self.video_text_dataset = FileDataset(self.cfg.video_text_data, self.cfg.selected_cols)

        if self.cfg.audio_text_data is not None:
            print("Load Video Text data")
            self.audio_text_dataset = FileDataset(self.cfg.audio_text_data, self.cfg.selected_cols)


    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        paths = self.cfg.data.split(',')
        assert len(paths) > 0

        file_path = paths[(epoch - 1) % (len(paths))]
        dataset = FileDataset(file_path, self.cfg.selected_cols)



        self.datasets[split] = UnifyDataset(
            split,
            dataset,
            self.bpe,
            self.src_dict,
            self.tgt_dict,
            max_src_length=self.cfg.max_src_length,
            max_tgt_length=self.cfg.max_tgt_length,
            seed=self.cfg.pretrain_seed,
            code_dict_size=self.cfg.code_dict_size,
            num_bins=self.cfg.num_bins,
            patch_image_size=self.cfg.patch_image_size,
            code_image_size=self.cfg.code_image_size,
            all_object_list=self.all_object_list,
            all_caption_list=self.all_caption_list,
            type2ans_dict=self.type2ans_dict,
            ans2type_dict=self.ans2type_dict,
            max_image_size=self.cfg.max_image_size,
            mask_ratio=self.cfg.mask_ratio,
            random_ratio=self.cfg.random_ratio,
            keep_ratio=self.cfg.keep_ratio,
            mask_length=self.cfg.mask_length,
            poisson_lambda=self.cfg.poisson_lambda,
            replace_length=self.cfg.replace_length,
            read_from_img_path=self.cfg.read_from_img_path,
            image_dir=self.cfg.image_dir,
            no_image_transform=self.cfg.no_image_transform,
            patch_frame_size=self.cfg.patch_frame_size,
            num_frames=self.cfg.num_frames,
            all_caption_video_list=self.all_caption_video_list,
            all_caption_audio_list=self.all_caption_audio_list,
            max_audio_len=self.cfg.max_audio_len,
            audio_dataset=self.audio_dataset,
            video_dataset=self.video_dataset,
            video_cnt=self.cfg.video_cnt,
            audio_cnt=self.cfg.audio_cnt,
            image_text_dataset=self.image_text_dataset,
            image_text_cnt=self.cfg.image_text_cnt,
            other_data_cnt=self.cfg.other_data_cnt,
            init_image_text_dataset=self.init_image_text_dataset,
            init_dataset_epoch=self.cfg.init_dataset_epoch,
            init_text_dataset=self.init_text_dataset,
            image_text_vqa_dataset=self.image_text_vqa_dataset,
            image_text_vqa_cnt=self.cfg.image_text_vqa_cnt,
            image_text_ground_dataset=self.image_text_ground_dataset,
            image_text_ground_cnt=self.cfg.image_text_ground_cnt,
            only_video_data=self.cfg.only_video_data,
            only_audio_data=self.cfg.only_audio_data,
            video_text_dataset=self.video_text_dataset,
            video_text_cnt=self.cfg.video_text_cnt,
            audio_text_dataset=self.audio_text_dataset,
            audio_text_cnt=self.cfg.audio_text_cnt,
            audio_with_video=self.cfg.audio_with_video,
            sample_rate=self.cfg.sample_rate,
        )

    def get_batch_iterator(
        self,
        dataset,
        max_tokens=None,
        max_sentences=None,
        max_positions=None,
        ignore_invalid_inputs=False,
        required_batch_size_multiple=1,
        seed=1,
        num_shards=1,
        shard_id=0,
        num_workers=0,
        epoch=1,
        data_buffer_size=0,
        disable_iterator_cache=False,
    ):
        assert isinstance(dataset, FairseqDataset)

        # initialize the dataset with the correct starting epoch
        dataset.set_epoch(epoch)

        # create mini-batches with given size constraints
        batch_sampler = [
            [j for j in range(i, min(i + max_sentences, len(dataset)))]
            for i in range(0, len(dataset), max_sentences)
        ]
        total_row_count = dataset.dataset.get_total_row_count()
        num_batches = math.ceil(math.ceil(total_row_count / num_shards) / max_sentences)
        if len(batch_sampler) < num_batches:
            batch_sampler.append([1])

        # return a reusable, sharded iterator
        epoch_iter = iterators.EpochBatchIterator(
            dataset=dataset,
            collate_fn=dataset.collater,
            batch_sampler=batch_sampler,
            seed=seed,
            num_shards=1,
            shard_id=0,
            num_workers=num_workers,
            epoch=epoch,
            buffer_size=data_buffer_size
        )

        return epoch_iter