File size: 4,781 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""
Modified from https://github.com/m-bain/frozen-in-time/blob/22a91d78405ec6032fdf521ae1ff5573358e632f/base/base_dataset.py
"""
import random
import av
import decord
import torch
import numpy as np
import math
# decord.bridge.set_bridge("torch")

from decord.bridge import to_torch 

def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float:
    """
    Converts a present time with the given time base and start_pts offset to seconds.

    Returns:
        time_in_seconds (float): The corresponding time in seconds.

    https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64
    """
    if pts == math.inf:
        return math.inf

    return int(pts - start_pts) * time_base


def get_pyav_video_duration(video_reader):
    video_stream = video_reader.streams.video[0]
    video_duration = pts_to_secs(
        video_stream.duration,
        video_stream.time_base,
        video_stream.start_time
    )
    return float(video_duration)


def get_frame_indices_by_fps():
    pass


def get_frame_indices(num_frames, vlen, sample='rand', fix_start=None, input_fps=1, max_num_frames=-1):
    if sample in ["rand", "middle"]:
        acc_samples = min(num_frames, vlen)
        # split the video into `acc_samples` intervals, and sample from each interval.
        intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
        ranges = []
        for idx, interv in enumerate(intervals[:-1]):
            ranges.append((interv, intervals[idx + 1] - 1))
        if sample == 'rand':
            try:
                frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
            except:
                frame_indices = np.random.permutation(vlen)[:acc_samples]
                frame_indices.sort()
                frame_indices = list(frame_indices)
        elif fix_start is not None:
            frame_indices = [x[0] + fix_start for x in ranges]
        elif sample == 'middle':
            frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
        else:
            raise NotImplementedError

        if len(frame_indices) < num_frames:  # padded with last frame
            padded_frame_indices = [frame_indices[-1]] * num_frames
            padded_frame_indices[:len(frame_indices)] = frame_indices
            frame_indices = padded_frame_indices
    elif "fps" in sample:  # fps0.5, sequentially sample frames at 0.5 fps
        output_fps = float(sample[3:])
        duration = float(vlen) / input_fps
        delta = 1 / output_fps  # gap between frames, this is also the clip length each frame represents
        frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
        frame_indices = np.around(frame_seconds * input_fps).astype(int)
        frame_indices = [e for e in frame_indices if e < vlen]
        
        if max_num_frames > 0 and len(frame_indices) > max_num_frames:
            frame_indices = frame_indices[:max_num_frames]
            # frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
    else:
        raise ValueError
    return frame_indices


def read_frames_av(video_path, num_frames, sample='rand', fix_start=None, max_num_frames=-1):
    reader = av.open(video_path)
    frames = [torch.from_numpy(f.to_rgb().to_ndarray()) for f in reader.decode(video=0)]
    vlen = len(frames)
    duration = get_pyav_video_duration(reader)
    fps = vlen / float(duration)
    frame_indices = get_frame_indices(
        num_frames, vlen, sample=sample, fix_start=fix_start,
        input_fps=fps, max_num_frames=max_num_frames
    )
    frames = torch.stack([frames[idx] for idx in frame_indices])  # (T, H, W, C), torch.uint8
    frames = frames.permute(0, 3, 1, 2)  # (T, C, H, W), torch.uint8
    return frames, frame_indices, duration

# decord.bridge.set_bridge("torch")
def read_frames_decord(video_path, num_frames, sample='rand', fix_start=None, max_num_frames=-1):
    video_reader = decord.VideoReader(video_path, num_threads=1)
    vlen = len(video_reader)
    fps = video_reader.get_avg_fps()
    duration = vlen / float(fps)
    frame_indices = get_frame_indices(
        num_frames, vlen, sample=sample, fix_start=fix_start,
        input_fps=fps, max_num_frames=max_num_frames
    )
    frames = video_reader.get_batch(frame_indices)  # (T, H, W, C), torch.uint8
    frames = to_torch(frames)
    # try:
    #     print(type(frames))
    #     frames = frames.asnumpy()
    #     frames = torch.from_numpy(frames)
    # except:
    #     print("expt", type(frames))
    #     pass
    frames = frames.permute(0, 3, 1, 2)  # (T, C, H, W), torch.uint8
    return frames, frame_indices, duration


VIDEO_READER_FUNCS = {
    'av': read_frames_av,
    'decord': read_frames_decord
}