File size: 111,523 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
# Copyright 2022 The OFA-Sys Team. 
# All rights reserved.
# This source code is licensed under the Apache 2.0 license 
# found in the LICENSE file in the root directory.
 
import math
import random
from typing import Any, Dict, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.distributed import fsdp_wrap
from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderDecoderModel,
    FairseqIncrementalDecoder,
    register_model,
    register_model_architecture,
)
from fairseq.modules import (
    AdaptiveSoftmax,
    BaseLayer,
    FairseqDropout,
    LayerDropModuleList,
    LayerNorm,
    SinusoidalPositionalEmbedding,
)
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_
from torch import Tensor

from .unify_transformer_layer import TransformerEncoderLayer, TransformerDecoderLayer
from .resnet import ResNet
from .frozen_bn import FrozenBatchNorm2d


# image 
from .encoders.timm_resnet import resnet101, resnet152, resnet50
# video 
from .encoders.resnext3d import ResNeXt3D, ResNeXtBottleneck

# audio
from .encoders.pann import create_pann_model
from data.audio_utils import  AUDIO_CFG, dotdict

DEFAULT_MAX_SOURCE_POSITIONS = 1024
DEFAULT_MAX_TARGET_POSITIONS = 1024


DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8)
import math 

def BatchNorm2d(out_chan, momentum=0.1, eps=1e-3):
    return nn.SyncBatchNorm.convert_sync_batchnorm(
        nn.BatchNorm2d(out_chan, momentum=momentum, eps=eps)
    )


def make_token_bucket_position(bucket_size, max_position=DEFAULT_MAX_SOURCE_POSITIONS):
    context_pos = torch.arange(max_position, dtype=torch.long)[:, None]
    memory_pos = torch.arange(max_position, dtype=torch.long)[None, :]
    relative_pos = context_pos - memory_pos
    sign = torch.sign(relative_pos)
    mid = bucket_size // 2
    abs_pos = torch.where((relative_pos<mid) & (relative_pos > -mid), mid-1, torch.abs(relative_pos))
    log_pos = torch.ceil(torch.log(abs_pos/mid)/math.log((max_position-1)/mid) * (mid-1)) + mid
    log_pos = log_pos.int()
    bucket_pos = torch.where(abs_pos.le(mid), relative_pos, log_pos*sign).long()
    return bucket_pos + bucket_size - 1


def make_image_bucket_position(bucket_size, num_relative_distance):
    coords_h = torch.arange(bucket_size)
    coords_w = torch.arange(bucket_size)
    coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij'))  # 2, Wh, Ww
    coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
    relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
    relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
    relative_coords[:, :, 0] += bucket_size - 1  # shift to start from 0
    relative_coords[:, :, 1] += bucket_size - 1
    relative_coords[:, :, 0] *= 2 * bucket_size - 1
    relative_position_index = torch.zeros(size=(bucket_size * bucket_size + 1,) * 2, dtype=relative_coords.dtype)
    relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
    relative_position_index[0, 0:] = num_relative_distance - 3
    relative_position_index[0:, 0] = num_relative_distance - 2
    relative_position_index[0, 0] = num_relative_distance - 1
    return relative_position_index


class PromptEncoder(torch.nn.Module):
    r"""
    Prompt encoder to generate prompts, including prompt, prefix, instance and instruction
    """

    def __init__(
            self,
            type,
            length,
            projection,
            embed_dim,
            proj_dim,
            layers,
            vocab_size):
        super().__init__()
        self.prefix_projection = projection

        if type == "prefix":
            layers = layers
            prompt_vocab_size = length

        if self.prefix_projection:
            self.embedding = torch.nn.Embedding(prompt_vocab_size, embed_dim)
            self.trans = torch.nn.Sequential(
                torch.nn.Linear(embed_dim, proj_dim),
                torch.nn.ReLU(),
                torch.nn.Linear(proj_dim, layers * 2 * embed_dim)
            )
        else:
            if type == "prefix":
                self.embedding = torch.nn.Embedding(
                    prompt_vocab_size, layers * 2 * embed_dim)

    def forward(self, prefix: torch.Tensor):
        if self.prefix_projection:
            prefix_tokens = self.embedding(prefix)
            past_key_values = self.trans(prefix_tokens)
        else:
            past_key_values = self.embedding(prefix)
        return past_key_values


@register_model("unify_transformer")
class TransformerModel(FairseqEncoderDecoderModel):
    """
    Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017)
    <https://arxiv.org/abs/1706.03762>`_.

    Args:
        encoder (TransformerEncoder): the encoder
        decoder (TransformerDecoder): the decoder

    The Transformer model provides the following named architectures and
    command-line arguments:

    .. argparse::
        :ref: fairseq.models.transformer_parser
        :prog:
    """

    def __init__(self, args, encoder, decoder):
        super().__init__(encoder, decoder)
        self.args = args
        self.supports_align_args = True

        

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        # fmt: off
        parser.add_argument('--activation-fn',
                            choices=utils.get_available_activation_fns(),
                            help='activation function to use')
        parser.add_argument('--dropout', type=float, metavar='D',
                            help='dropout probability')
        parser.add_argument('--attention-dropout', type=float, metavar='D',
                            help='dropout probability for attention weights')
        parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D',
                            help='dropout probability after activation in FFN.')
        parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
                            help='path to pre-trained encoder embedding')
        parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
                            help='encoder embedding dimension')
        parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N',
                            help='encoder embedding dimension for FFN')
        parser.add_argument('--encoder-layers', type=int, metavar='N',
                            help='num encoder layers')
        parser.add_argument('--encoder-attention-heads', type=int, metavar='N',
                            help='num encoder attention heads')
        parser.add_argument('--encoder-normalize-before', action='store_true',
                            help='apply layernorm before each encoder block')
        parser.add_argument('--encoder-learned-pos', action='store_true',
                            help='use learned positional embeddings in the encoder')
        parser.add_argument('--bitfit', default=False, action='store_true',
                            help='use bitfit in the transformer')
        parser.add_argument('--freeze-encoder', action='store_true',
                            help='freeze the parameters in the encoder')


        parser.add_argument('--adapter', action='store_true',
                            help='use adapter in the model')
        parser.add_argument('--adapter-dim', type=int, metavar='N',
                            help='adapter-down-dim')
        ### vl ADAPTER
        parser.add_argument('--adapter-type', type=str, metavar='STR',
                            help='adapter-type')
        parser.add_argument('--unfreeze', action='store_true',
                            help='unfreeze model when using adapters/prompts')

        parser.add_argument('--encoder-prompt', action='store_true',
                            help='use prompt tuning in the encoder')
        parser.add_argument('--encoder-prompt-type', type=str, metavar='STR',
                            choices=['prefix'],
                            help='the type of prompt tuning')
        parser.add_argument('--encoder-prompt-projection', action='store_true',
                            help='use prompt projection')
        parser.add_argument('--encoder-prompt-length', type=int, metavar='N',
                            help='use prompt tuning in the decoder')
        parser.add_argument('--encoder-prompt-dim', type=int, metavar='N',
                            help='encoder prompt dimension if use encoder prompt projection')
        parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
                            help='path to pre-trained decoder embedding')
        parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension')
        parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension for FFN')
        parser.add_argument('--decoder-layers', type=int, metavar='N',
                            help='num decoder layers')
        parser.add_argument('--decoder-attention-heads', type=int, metavar='N',
                            help='num decoder attention heads')
        parser.add_argument('--decoder-learned-pos', action='store_true',
                            help='use learned positional embeddings in the decoder')
        parser.add_argument('--decoder-normalize-before', action='store_true',
                            help='apply layernorm before each decoder block')
        parser.add_argument('--decoder-output-dim', type=int, metavar='N',
                            help='decoder output dimension (extra linear layer '
                                 'if different from decoder embed dim')
        parser.add_argument('--freeze-decoder', action='store_true',
                            help='freeze the parameters in the decoder')

        parser.add_argument('--decoder-prompt', action='store_true',
                            help='use prompt tuning in the decoder')
        parser.add_argument('--decoder-prompt-type', type=str, metavar='STR',
                            choices=['prefix'],
                            help='the type of prompt tuning')
        parser.add_argument('--decoder-prompt-length', type=int, metavar='N',
                            help='use prompt tuning in the decoder')
        parser.add_argument('--decoder-prompt-projection', action='store_true',
                            help='use prompt projection')
        parser.add_argument('--decoder-prompt-dim', type=int, metavar='N',
                            help='decoder prompt dimension if use decoder prompt projection')
        parser.add_argument('--share-decoder-input-output-embed', action='store_true',
                            help='share decoder input and output embeddings')
        parser.add_argument('--share-all-embeddings', action='store_true',
                            help='share encoder, decoder and output embeddings'
                                 ' (requires shared dictionary and embed dim)')
        parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true',
                            help='if set, disables positional embeddings (outside self attention)')
        parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
                            help='comma separated list of adaptive softmax cutoff points. '
                                 'Must be used with adaptive_loss criterion'),
        parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D',
                            help='sets adaptive softmax dropout for the tail projections')
        parser.add_argument('--layernorm-embedding', action='store_true',
                            help='add layernorm to embedding')
        parser.add_argument('--no-scale-embedding', action='store_true',
                            help='if True, dont scale embeddings')
        parser.add_argument('--checkpoint-activations', action='store_true',
                            help='checkpoint activations at each layer, which saves GPU '
                                 'memory usage at the cost of some additional compute')
        parser.add_argument('--offload-activations', action='store_true',
                            help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.')
        # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019)
        parser.add_argument('--no-cross-attention', default=False, action='store_true',
                            help='do not perform cross-attention')
        parser.add_argument('--cross-self-attention', default=False, action='store_true',
                            help='perform cross+self-attention')
        # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019)
        parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0,
                            help='LayerDrop probability for encoder')
        parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0,
                            help='LayerDrop probability for decoder')
        parser.add_argument('--encoder-layers-to-keep', default=None,
                            help='which layers to *keep* when pruning as a comma-separated list')
        parser.add_argument('--decoder-layers-to-keep', default=None,
                            help='which layers to *keep* when pruning as a comma-separated list')
        # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)
        parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0,
                            help='iterative PQ quantization noise at training time')
        parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8,
                            help='block size of quantization noise at training time')
        parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0,
                            help='scalar quantization noise and scalar quantization at training time')
        # args for Fully Sharded Data Parallel (FSDP) training
        parser.add_argument(
            '--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP,
            help=(
                'minimum number of params for a layer to be wrapped with FSDP() when '
                'training with --ddp-backend=fully_sharded. Smaller values will '
                'improve memory efficiency, but may make torch.distributed '
                'communication less efficient due to smaller input sizes. This option '
                'is set to 0 (i.e., always wrap) when --checkpoint-activations or '
                '--offload-activations are passed.'
            )
        )

        parser.add_argument('--resnet-drop-path-rate', type=float,
                            help='resnet drop path rate')
        parser.add_argument('--encoder-drop-path-rate', type=float,
                            help='encoder drop path rate')
        parser.add_argument('--decoder-drop-path-rate', type=float,
                            help='encoder drop path rate')

        parser.add_argument('--token-bucket-size', type=int,
                            help='token bucket size')
        parser.add_argument('--image-bucket-size', type=int,
                            help='image bucket size')

        parser.add_argument('--attn-scale-factor', type=float,
                            help='attention scale factor')
        parser.add_argument('--freeze-resnet', action='store_true',
                            help='freeze resnet')
        parser.add_argument('--freeze-encoder-embedding', action='store_true',
                            help='freeze encoder token embedding')
        parser.add_argument('--freeze-decoder-embedding', action='store_true',
                            help='freeze decoder token embedding')
        parser.add_argument('--add-type-embedding', action='store_true',
                            help='add source/region/patch type embedding')
        parser.add_argument('--add-mm-type-embedding', action='store_true',
                            help='add source/region/patch type embedding')
        
        parser.add_argument('--interpolate-position', action='store_true',
                            help='interpolate position')

        parser.add_argument('--resnet-type', choices=['resnet50', 'resnet101', 'resnet152'],
                            help='resnet type')
        parser.add_argument('--resnet-model-path', type=str, metavar='STR',
                            help='path to load resnet')
        parser.add_argument('--code-image-size', type=int,
                            help='code image size')
        parser.add_argument('--patch-layernorm-embedding', action='store_true',
                            help='add layernorm to patch embedding')
        parser.add_argument('--code-layernorm-embedding', action='store_true',
                            help='add layernorm to code embedding')
        parser.add_argument('--entangle-position-embedding', action='store_true',
                            help='entangle position embedding')
        parser.add_argument('--disable-entangle', action='store_true',
                            help='disable entangle')
        parser.add_argument('--sync-bn', action='store_true',
                            help='sync batchnorm')

        parser.add_argument('--scale-attn', action='store_true',
                            help='scale attn')
        parser.add_argument('--scale-fc', action='store_true',
                            help='scale fc')
        parser.add_argument('--scale-heads', action='store_true',
                            help='scale heads')
        parser.add_argument('--scale-resids', action='store_true',
                            help='scale resids')
        # fmt: on

        # image encoder
        parser.add_argument('--image-encoder-name', type=str, metavar='STR', default='resnet',
                            help='image_encoder_name')
        parser.add_argument('--return-hidden-state-vision', action='store_true',
                            help='return_hidden_state_vision')

        parser.add_argument('--freeze-image-encoder', action='store_true',
                            help='freeze_image_encoder')    

        parser.add_argument('--nograd', action='store_true',
                            help='nograd for vis encoder')   

        parser.add_argument('--encoder-eval', action='store_true',
                            help='vision encoder.eval()')  
        # video
        parser.add_argument('--video-encoder-name', type=str, default=None,
                    help='video_encoder_name')              

        parser.add_argument('--video-model-path', type=str, default=None,
                    help='video_model_path')    
        parser.add_argument('--freeze-video-encoder', action='store_true',
                            help='freeze_video_encoder')   

        parser.add_argument('--sample-patch-num', type=int, default=None,
                            help='num of tokens selected at random')
        parser.add_argument('--with-cls', action='store_true',
                            help='with_cls')  

        parser.add_argument('--sample-video-patch-num', type=int, default=None,
                            help='num of tokens selected at random')
        # audio 
        parser.add_argument('--audio-encoder-name', type=str, default=None,
                    help='audio_encoder_name')                 
        parser.add_argument('--audio-model-path', type=str, default=None,
                    help='audio_model_path')    
        parser.add_argument('--freeze-audio-encoder', action='store_true',
                            help='freeze_audio_encoder')
        parser.add_argument('--fusion-type', type=str, default=None,
                    help='fusion_type') 
        parser.add_argument('--enable-fusion', action='store_true',
                            help='enable_fusion')
        parser.add_argument('--mel-bins', type=int, default=64,
                            help='mel_bins')
        parser.add_argument('--hop-size', type=int, default=480,
                            help='hop_size')
        parser.add_argument('--sample-audio-patch-num', type=int, default=None,
                            help='num of tokens selected at random')
        parser.add_argument('--fstride', type=int, default=10,
                            help='fstride')
        parser.add_argument('--tstride', type=int, default=10,
                            help='tstride')
        parser.add_argument('--input-tdim', type=int, default=1024,
                        help='input_tdim')


        # progressive training 

        parser.add_argument('--progressive', action='store_true',
                            help='progressive')
        parser.add_argument('--unfreeze-epoch-encoder', type=int, default=0,
                            help='unfreeze_epoch_encoder')
        parser.add_argument('--unfreeze-epoch-decoder', type=int, default=0,
                            help='unfreeze_epoch_decoder')

        parser.add_argument('--unfreeze-epoch-image', type=int, default=0,
                            help='unfreeze_epoch_image')
        parser.add_argument('--unfreeze-epoch-video', type=int, default=0,
                        help='unfreeze_epoch_video')                  
        parser.add_argument('--unfreeze-epoch-audio', type=int, default=0,
                            help='unfreeze_epoch_audio')


        ## only linear 
        parser.add_argument('--only-linear-proj', action='store_true',
                            help='only_linear_proj')
        parser.add_argument('--unfreeze-epoch', type=int, default=0,
                            help='unfreeze_epoch')
        
        parser.add_argument('--freeze-perception', action='store_true',
                            help='freeze_perception')
        ## 
        parser.add_argument('--qk-norm', action='store_true',
                            help='qk_norm')

        
        parser.add_argument('--layernorm-image-embedding', action='store_true',
                            help='layernorm_image_embedding')
        
        parser.add_argument('--layernorm-video-embedding', action='store_true',
                            help='layernorm_video_embedding')
        
        parser.add_argument('--layernorm-audio-embedding', action='store_true',
                            help='layernorm_audio_embedding')
        
        parser.add_argument('--freeze-batchnorm', action='store_true',
                            help='freeze_batchnorm')
        
        parser.add_argument('--freeze-resnet-video', action='store_true',
                            help='freeze resnet video')
        
    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_architecture(args)

        if args.encoder_layers_to_keep:
            args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
        if args.decoder_layers_to_keep:
            args.decoder_layers = len(args.decoder_layers_to_keep.split(","))

        if getattr(args, "max_source_positions", None) is None:
            args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
        if getattr(args, "max_target_positions", None) is None:
            args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS

        src_dict, tgt_dict = task.source_dictionary, task.target_dictionary

        if args.share_all_embeddings:
            if src_dict != tgt_dict:
                raise ValueError("--share-all-embeddings requires a joined dictionary")
            if args.encoder_embed_dim != args.decoder_embed_dim:
                raise ValueError(
                    "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
                )
            if args.decoder_embed_path and (
                args.decoder_embed_path != args.encoder_embed_path
            ):
                raise ValueError(
                    "--share-all-embeddings not compatible with --decoder-embed-path"
                )
            encoder_embed_tokens = cls.build_embedding(
                args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
            )
            decoder_embed_tokens = encoder_embed_tokens
            args.share_decoder_input_output_embed = True
        else:
            encoder_embed_tokens = cls.build_embedding(
                args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
            )
            decoder_embed_tokens = cls.build_embedding(
                args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
            )
        if getattr(args, "freeze_encoder_embedding", False) or getattr(
                args, "encoder_prompt", False) or getattr(args, "decoder_prompt", False) or getattr(args, "adapter", False):    
            encoder_embed_tokens.weight.requires_grad = False
        if getattr(args, "freeze_decoder_embedding", False) or getattr(
                args, "encoder_prompt", False) or getattr(args, "decoder_prompt", False) or getattr(args, "adapter", False):    
            decoder_embed_tokens.weight.requires_grad = False
        if getattr(args, "offload_activations", False):
            args.checkpoint_activations = True  # offloading implies checkpointing
        encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens)
        decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens)

        if getattr(args, "freeze_encoder", False):
            encoder.requires_grad_(False)


            encoder.embed_images.requires_grad_(True)
            encoder.image_proj.requires_grad_(True)
            encoder.embed_image_positions.requires_grad_(True)

            if encoder.layernorm_image_embedding is not None:
                encoder.layernorm_image_embedding.requires_grad_(True)
                print("freeze image LN")

            if hasattr(encoder, 'embed_videos'):
                encoder.embed_videos.requires_grad_(True)
                encoder.video_proj.requires_grad_(True)
                encoder.embed_video_positions.requires_grad_(True)

                if encoder.layernorm_video_embedding is not None:
                    encoder.layernorm_video_embedding.requires_grad_(True)
                    print("freeze audio LN")

            if getattr(args, "audio_encoder_name", False):
                encoder.embed_audios.requires_grad_(True)
                encoder.audio_proj.requires_grad_(True)
                encoder.embed_audio_positions.requires_grad_(True)
                if encoder.layernorm_audio_embedding is not None:
                    encoder.layernorm_audio_embedding.requires_grad_(True)
                    print("freeze audio LN")



        if getattr(args, "freeze_decoder", False):
            decoder.requires_grad_(False)


        if getattr(args, "encoder_prompt", False) or getattr(
                args, "decoder_prompt", False) or getattr(
                args, "adapter", False):
            if not getattr(args, "unfreeze", False):
                encoder.requires_grad_(False)
                decoder.requires_grad_(False)
            if getattr(args, "encoder_prompt", False):
                encoder.encoder_prompt_encoder.requires_grad_(True)
            if getattr(args, "decoder_prompt", False):
                decoder.decoder_prompt_encoder.requires_grad_(True)
            if getattr(args, "adapter", False):
                for idx, layer in enumerate(encoder.layers):
                    layer.adapter.requires_grad_(True)
                for idx, layer in enumerate(decoder.layers):
                    layer.adapter.requires_grad_(True)     
        if getattr(args, "freeze_image_encoder", False):
            encoder.embed_images.requires_grad_(False)

        if getattr(args, "freeze_video_encoder", False) and hasattr(encoder, 'embed_videos'):
            encoder.embed_videos.requires_grad_(False)
        
        if getattr(args, "freeze_audio_encoder", False) and hasattr(encoder, 'embed_audios'):
            encoder.embed_audios.requires_grad_(False)

        if getattr(args, "freeze_batchnorm", False):

            for n, p in encoder.named_parameters():
                if 'bn' in n:
                    p.requires_grad = False
                    print("freeze:", n)
                
        if hasattr(encoder, 'embed_audios'):
            if hasattr(encoder.embed_audios, 'logmel_extractor'):
                for param in encoder.embed_audios.logmel_extractor.parameters():
                    param.requires_grad = False

        if getattr(args, "encoder_eval", False):
            print("Set encoders.eval()")
            encoder.embed_images.eval()

            if getattr(args, "video_encoder_name", None):
                encoder.embed_videos.eval()


        if not args.share_all_embeddings:
            min_params_to_wrap = getattr(
                args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP
            )
            # fsdp_wrap is a no-op when --ddp-backend != fully_sharded
            encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap)
            decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap)
        return cls(args, encoder, decoder)

    @classmethod
    def build_embedding(cls, args, dictionary, embed_dim, path=None):
        num_embeddings = len(dictionary)
        padding_idx = dictionary.pad()

        args.vocab_size = num_embeddings
        emb = Embedding(num_embeddings, embed_dim, padding_idx)
        # if provided, load from preloaded dictionaries
        if path:
            embed_dict = utils.parse_embedding(path)
            utils.load_embedding(embed_dict, dictionary, emb)
        return emb

    @classmethod
    def build_encoder(cls, args, src_dict, embed_tokens):
        return TransformerEncoder(args, src_dict, embed_tokens)

    @classmethod
    def build_decoder(cls, args, tgt_dict, embed_tokens):
        return TransformerDecoder(
            args,
            tgt_dict,
            embed_tokens,
            no_encoder_attn=getattr(args, "no_cross_attention", False),
        )

    # TorchScript doesn't support optional arguments with variable length (**kwargs).
    # Current workaround is to add union of all arguments in child classes.
    def forward(
        self,
        src_tokens,
        src_lengths,
        prev_output_tokens,
        return_all_hiddens: bool = True,
        features_only: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        """
        Run the forward pass for an encoder-decoder model.

        Copied from the base class, but without ``**kwargs``,
        which are not supported by TorchScript.
        """
        encoder_out = self.encoder(
            src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens
        )
        decoder_out = self.decoder(
            prev_output_tokens,
            encoder_out=encoder_out,
            features_only=features_only,
            alignment_layer=alignment_layer,
            alignment_heads=alignment_heads,
            src_lengths=src_lengths,
            return_all_hiddens=return_all_hiddens,
        )
        return decoder_out

    # Since get_normalized_probs is in the Fairseq Model which is not scriptable,
    # I rewrite the get_normalized_probs from Base Class to call the
    # helper function in the Base Class.
    @torch.jit.export
    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        """Get normalized probabilities (or log probs) from a net's output."""
        return self.get_normalized_probs_scriptable(net_output, log_probs, sample)


class TransformerEncoder(FairseqEncoder):
    """
    Transformer encoder consisting of *args.encoder_layers* layers. Each layer
    is a :class:`TransformerEncoderLayer`.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): encoding dictionary
        embed_tokens (torch.nn.Embedding): input embedding
    """

    def __init__(self, args, dictionary, embed_tokens):
        self.args = args
        super().__init__(dictionary)
        self.register_buffer("version", torch.Tensor([3]))
  

        self.freeze_image_encoder = getattr(args, "freeze_image_encoder", False)
        self.freeze_video_encoder = getattr(args, "freeze_video_encoder", False)
        self.nograd = getattr(args, "nograd", False)
        self.num_frames = getattr(args, 'num_frames', 4)

        self.sample_patch_num = getattr(args, "sample_patch_num", 196)

        self.sample_audio_patch_num = getattr(args, "sample_audio_patch_num", self.sample_patch_num)
        self.sample_video_patch_num = getattr(args, "sample_video_patch_num", self.sample_patch_num)

        self.with_cls = getattr(args, "with_cls", False)
        print("self.sample_patch_num", self.sample_patch_num)
        print("self.sample_audio_patch_num", self.sample_audio_patch_num)
        print("self.sample_video_patch_num", self.sample_video_patch_num)
        print("self.with_cls", self.with_cls)

        if getattr(args, "encoder_prompt", False):
            self.encoder_prompt_encoder = PromptEncoder(
                type=args.encoder_prompt_type,
                length=args.encoder_prompt_length,
                projection=args.encoder_prompt_projection,
                embed_dim=args.encoder_embed_dim,
                proj_dim=args.encoder_prompt_dim,
                layers=args.encoder_layers,
                vocab_size=args.vocab_size)
        self.encoder_dropout = nn.Dropout(p=0.2)
        
        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )
        self.encoder_layerdrop = args.encoder_layerdrop

        embed_dim = embed_tokens.embedding_dim
        self.padding_idx = embed_tokens.padding_idx
        self.max_source_positions = args.max_source_positions
        self.num_attention_heads = args.encoder_attention_heads

        self.embed_tokens = embed_tokens

        self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)

        if getattr(args, "layernorm_embedding", False):
            self.layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_embedding = None

        self.mm_type_embedding = False 
        if getattr(args, "add_mm_type_embedding", False):
            self.type_embedding = Embedding(4, embed_dim, padding_idx=None)
            self.mm_type_embedding = True
        elif getattr(args, "add_type_embedding", False):
            self.type_embedding = Embedding(2, embed_dim, padding_idx=None)
        else:
            self.type_embedding = None

        norm_layer = None
        norm_layer_video = None
        if getattr(args, "sync_bn", False):
            norm_layer = BatchNorm2d
        else:
            if getattr(args, "freeze_resnet", False): # or getattr(args, "freeze_batchnorm", False)
                norm_layer = FrozenBatchNorm2d
                print("Frozen image bn", norm_layer)
            if getattr(args, "freeze_resnet_video", False):
                norm_layer_video = FrozenBatchNorm2d
                print("Frozen video bn", norm_layer_video)

 
        
        if getattr(args, "image_encoder_name", None):

            if 'timm_resnet' in args.image_encoder_name:
                if args.resnet_type == 'resnet101':
                    self.embed_images = resnet101(norm_layer=norm_layer)
                elif args.resnet_type == 'resnet152':
                    self.embed_images = resnet152(norm_layer=norm_layer)
                elif args.resnet_type == 'resnet50':
                    self.embed_images = resnet50(norm_layer=norm_layer)
                else:
                    raise NotImplementedError
                self.image_proj = Linear(2048, embed_dim)
            else: 
                if args.resnet_type == 'resnet101':
                    self.embed_images = ResNet([3, 4, 23], norm_layer=norm_layer, drop_path_rate=args.resnet_drop_path_rate)
                elif args.resnet_type == 'resnet152':
                    self.embed_images = ResNet([3, 8, 36], norm_layer=norm_layer, drop_path_rate=args.resnet_drop_path_rate)
                elif args.resnet_type == 'resnet50':
                    self.embed_images = ResNet([3, 4, 6], norm_layer=norm_layer, drop_path_rate=args.resnet_drop_path_rate)
                else:
                    raise NotImplementedError
                self.image_proj = Linear(1024, embed_dim)
        else: 
            if args.resnet_type == 'resnet101':
                self.embed_images = ResNet([3, 4, 23], norm_layer=norm_layer, drop_path_rate=args.resnet_drop_path_rate)
            elif args.resnet_type == 'resnet152':
                self.embed_images = ResNet([3, 8, 36], norm_layer=norm_layer, drop_path_rate=args.resnet_drop_path_rate)
            elif args.resnet_type == 'resnet50':
                self.embed_images = ResNet([3, 4, 6], norm_layer=norm_layer, drop_path_rate=args.resnet_drop_path_rate)
            else:
                raise NotImplementedError
            self.image_proj = Linear(1024, embed_dim)

        if getattr(args, "layernorm_image_embedding", False):
            self.layernorm_image_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_image_embedding = None


        ## video 
        if getattr(args, "video_encoder_name", None):
            print("Loading: ", args.video_encoder_name)
            patch_frame_size = getattr(args, 'patch_frame_size', 224)
            num_frames = getattr(args, 'num_frames', 4)
            pretrained_model = getattr(args, "video_model_path", None)

            if  'resnext' in args.video_encoder_name:

                if 'all' in args.video_encoder_name:
                    if 'resnext101' in args.video_encoder_name :
                        self.embed_videos = ResNeXt3D(ResNeXtBottleneck, [3, 4, 23, 3], norm_layer=norm_layer_video)
                    elif 'resnext152' in args.video_encoder_name:
                        self.embed_videos = ResNeXt3D(ResNeXtBottleneck, [3, 8, 36, 3], norm_layer=norm_layer_video)
                    elif 'resnext50' in args.video_encoder_name:
                        self.embed_videos = ResNeXt3D(ResNeXtBottleneck, [3, 4, 6, 3], norm_layer=norm_layer_video)
                    else:
                        raise NotImplementedError
                    vis_dim = 2048
                else:
                    if args.video_encoder_name == 'resnext101':
                        self.embed_videos = ResNeXt3D(ResNeXtBottleneck, [3, 4, 23])
                    elif args.video_encoder_name == 'resnext152':
                        self.embed_videos = ResNeXt3D(ResNeXtBottleneck, [3, 8, 36])
                    elif args.video_encoder_name == 'resnext50':
                        self.embed_videos = ResNeXt3D(ResNeXtBottleneck, [3, 4, 6])
                    else:
                        raise NotImplementedError
                    vis_dim = 1024

                self.embed_video_positions = Embedding(args.image_bucket_size ** 2 + 1, embed_dim)

                if pretrained_model:
                    print("load pretrained_model {}".format(pretrained_model))
                    state_dict = torch.load(pretrained_model)['state_dict']
                    if 'module' in list(state_dict.keys())[0]:
                        from collections import OrderedDict
                        new_state_dict = OrderedDict()
                        for k, v in state_dict.items():
                            name = k[7:] # remove 'module.' of dataparallel
                            new_state_dict[name]=v
                        state_dict = new_state_dict
    
                    msg = self.embed_videos.load_state_dict(state_dict, strict=False)
                    print(msg)

            else:
                raise NotImplemented


            self.video_proj = Linear(vis_dim, embed_dim)


        if getattr(args, "layernorm_video_embedding", False):
            self.layernorm_video_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_video_embedding = None

        ## video 
        if getattr(args, "audio_encoder_name", None):
            print("Loading: ", args.audio_encoder_name)



            pretrained_audio_model = getattr(args, "audio_model_path", None)
            audio_cfg = getattr(args, "audio_cfg", None)
            audio_cfg = audio_cfg if audio_cfg is not None else AUDIO_CFG
            
            audio_cfg = dotdict(audio_cfg)
            enable_fusion = getattr(args, "enable_fusion", False)
            fusion_type = getattr(args, "fusion_type", None)
            
            audio_cfg['mel_bins'] = getattr(args, "mel_bins", 64)
            audio_cfg['hop_size'] = getattr(args, "hop_size", 480)

            if 'pann' in args.audio_encoder_name:

                if 'cnn6' in args.audio_encoder_name:
                    audio_cfg['model_name'] = 'Cnn6'
                    audio_dim = 512
                elif 'cnn10' in args.audio_encoder_name:
                    audio_cfg['model_name'] = 'Cnn10'
                    audio_dim = 1024
                elif 'cnn14' in args.audio_encoder_name:
                    audio_cfg['model_name'] = 'Cnn14'
                    # audio_dim = 512
                    audio_dim = 2048
                else:
                    raise NotImplementedError

                self.embed_audios = create_pann_model(audio_cfg, enable_fusion, fusion_type)
        
            
                self.embed_audio_positions = Embedding(args.image_bucket_size ** 2 + 1, embed_dim)



                if pretrained_audio_model:
                    print("load pretrained_model {}".format(pretrained_audio_model))
                    state_dict = torch.load(pretrained_audio_model)
                    if 'model' in state_dict:
                        state_dict = state_dict['model']

                    if 'module' in list(state_dict.keys())[0]:
                        from collections import OrderedDict
                        new_state_dict = OrderedDict()
                        for k, v in state_dict.items():
                            name = k.replace('module.', '') # remove 'module.' of dataparallel
                            new_state_dict[name]=v
                        state_dict = new_state_dict

                    if 'sed_model.' in list(state_dict.keys())[0] or 'module.' in list(state_dict.keys())[0]:
                        from collections import OrderedDict
                        new_state_dict = OrderedDict()
                        for k, v in state_dict.items():
                            name = k.replace('sed_model.', '').replace('module.', '').replace('audio_branch.', '') # remove 'module.' of dataparallel
                            new_state_dict[name]=v
                        state_dict = new_state_dict

                    if audio_cfg['mel_bins'] != 64:

                        del_keys = []
                        for k, v in state_dict.items():
                            if 'logmel_extractor' in k or 'bn0' in k:
                                del_keys.append(k)

                        for k in del_keys:
                            del state_dict[k]

                    msg = self.embed_audios.load_state_dict(state_dict, strict=False)
                    print(msg)

            else:
                raise NotImplementedError

            self.audio_proj = Linear(audio_dim, embed_dim)
           

        if getattr(args, "layernorm_audio_embedding", False):
            self.layernorm_audio_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_audio_embedding = None


        if getattr(args, "resnet_model_path", None):
            print("load resnet {}".format(args.resnet_model_path))
            resnet_state_dict = torch.load(self.args.resnet_model_path)
            msg = self.embed_images.load_state_dict(resnet_state_dict, strict=False)
            print(msg)

        if getattr(args, "patch_layernorm_embedding", False):
            self.patch_layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.patch_layernorm_embedding = None

        self.embed_positions = Embedding(args.max_source_positions + 2, embed_dim)
        self.embed_image_positions = Embedding(args.image_bucket_size ** 2 + 1, embed_dim)
        self.pos_ln = LayerNorm(embed_dim)
        self.image_pos_ln = LayerNorm(embed_dim)
        self.pos_scaling = float(embed_dim / args.encoder_attention_heads * args.attn_scale_factor) ** -0.5
        self.pos_q_linear = nn.Linear(embed_dim, embed_dim)
        self.pos_k_linear = nn.Linear(embed_dim, embed_dim)

        if not args.adaptive_input and args.quant_noise_pq > 0:
            self.quant_noise = apply_quant_noise_(
                nn.Linear(embed_dim, embed_dim, bias=False),
                args.quant_noise_pq,
                args.quant_noise_pq_block_size,
            )
        else:
            self.quant_noise = None

        if self.encoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.encoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])

        dpr = [x.item() for x in torch.linspace(0, args.encoder_drop_path_rate, args.encoder_layers)]
        self.layers.extend(
            [self.build_encoder_layer(args, drop_path_rate=dpr[i]) for i in range(args.encoder_layers)]
        )
        self.num_layers = len(self.layers)

        if args.encoder_normalize_before:
            self.layer_norm = LayerNorm(embed_dim)
        else:
            self.layer_norm = None

        token_bucket_size = args.token_bucket_size
        token_num_rel_dis = 2 * token_bucket_size - 1
        token_rp_bucket = make_token_bucket_position(token_bucket_size)
        self.token_rel_pos_table_list = nn.ModuleList(
            [Embedding(token_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.encoder_layers)]
        )

        image_bucket_size = args.image_bucket_size
        image_num_rel_dis = (2 * image_bucket_size - 1) * (2 * image_bucket_size - 1) + 3
        image_rp_bucket = make_image_bucket_position(image_bucket_size, image_num_rel_dis)
        self.image_rel_pos_table_list = nn.ModuleList(
            [Embedding(image_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.encoder_layers)]
        )

        self.patch_image_size = args.patch_image_size
        self.orig_patch_image_size = args.orig_patch_image_size

        self.register_buffer("token_rp_bucket", token_rp_bucket)
        self.register_buffer("image_rp_bucket", image_rp_bucket)
        self.entangle_position_embedding = args.entangle_position_embedding


    def build_encoder_layer(self, args, drop_path_rate=0.0):
        layer = TransformerEncoderLayer(args, drop_path_rate=drop_path_rate, \
            use_adapter=getattr(args, "adapter", False), adapter_dim=getattr(args, "adapter_dim", 200), 
            adapter_type=getattr(args, "adapter_type", 'UN'))
        checkpoint = getattr(args, "checkpoint_activations", False)
        if checkpoint:
            offload_to_cpu = getattr(args, "offload_activations", False)
            layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu)
        # if we are checkpointing, enforce that FSDP always wraps the
        # checkpointed layer, regardless of layer size
        min_params_to_wrap = (
            getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP)
            if not checkpoint else 0
        )
        layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap)
        return layer

    def get_rel_pos_bias(self, x, idx):
        seq_len = x.size(1)
        rp_bucket = self.token_rp_bucket[:seq_len, :seq_len]
        values = F.embedding(rp_bucket, self.token_rel_pos_table_list[idx].weight)
        values = values.unsqueeze(0).expand(x.size(0), -1, -1, -1)
        values = values.permute([0, 3, 1, 2])
        return values.contiguous()

    def get_image_rel_pos_bias(self, image_position_ids, idx):
        bsz, seq_len = image_position_ids.shape
        rp_bucket_size = self.image_rp_bucket.size(1)

        rp_bucket = self.image_rp_bucket.unsqueeze(0).expand(
            bsz, rp_bucket_size, rp_bucket_size
        ).gather(1, image_position_ids[:, :, None].expand(bsz, seq_len, rp_bucket_size)
        ).gather(2, image_position_ids[:, None, :].expand(bsz, seq_len, seq_len))
        values = F.embedding(rp_bucket, self.image_rel_pos_table_list[idx].weight)
        values = values.permute(0, 3, 1, 2)
        return values

    def get_patch_audios_info(self, patch_images, sample_patch_num, device):

        if self.nograd and self.freeze_audio_encoder:
            with torch.no_grad():
                image_embed = self.embed_audios(patch_images)
        else:
            image_embed = self.embed_audios(patch_images)

        # in case of cnn (bs, c, h, w)
        h, w = image_embed.shape[-2:]
        image_num_patches = h * w 
        sh = int(math.ceil(math.sqrt(image_num_patches))) # to keep within image_bucket_size
        sw = sh
        image_embed = image_embed.flatten(2).transpose(1, 2) # (bs, c, hlw) -> (bs, hlw, c)

        image_padding_mask = patch_images.new_zeros((patch_images.size(0), image_num_patches)).bool()
        
        image_position_idx = torch.arange(sw).unsqueeze(0).expand(sh, sw) + \
                             torch.arange(sh).unsqueeze(1) * self.args.image_bucket_size + 1
        image_position_idx = image_position_idx.reshape(-1).to(device)[:image_num_patches]
        image_position_ids = image_position_idx[None, :].expand(patch_images.size(0), image_num_patches)

        if sample_patch_num is not None and sample_patch_num < image_num_patches:
            patch_orders = [
                random.sample(range(image_num_patches), k=sample_patch_num)
                for _ in range(patch_images.size(0))
            ]
            patch_orders = torch.LongTensor(patch_orders).to(device)
            image_embed = image_embed.gather(
                1, patch_orders.unsqueeze(2).expand(-1, -1, image_embed.size(2))
            )
            image_num_patches = sample_patch_num
            image_padding_mask = image_padding_mask.gather(1, patch_orders)
            image_position_ids = image_position_ids.gather(1, patch_orders)

        image_pos_embed = self.embed_audio_positions(image_position_ids)


        image_embed = self.audio_proj(image_embed.type(self.audio_proj.weight.dtype))

        if self.layernorm_audio_embedding is not None:
            image_embed = self.layernorm_audio_embedding(image_embed)

        return image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed


    def get_patch_videos_info(self, patch_images, sample_patch_num, device):
        if self.nograd and self.freeze_video_encoder:
            with torch.no_grad():
                _, image_embed = self.embed_videos(patch_images)
        else:
            _, image_embed = self.embed_videos(patch_images)
        
        l, h, w = image_embed.shape[-3:]
        image_num_patches = h * w * l
        image_embed = image_embed.flatten(2).transpose(1, 2) # (bs, c, hlw) -> (bs, hlw, c)
        numframes = l

        image_padding_mask = patch_images.new_zeros((patch_images.size(0), image_num_patches)).bool()
        
        image_position_idx = torch.arange(w).unsqueeze(0).expand(h, w) + \
                             torch.arange(h).unsqueeze(1) * self.args.image_bucket_size + 1
        image_position_idx = image_position_idx.unsqueeze(0).expand(numframes, -1, -1)  
        image_position_idx = image_position_idx.reshape(-1).to(device)
        image_position_ids = image_position_idx[None, :].expand(patch_images.size(0), image_num_patches)

        if sample_patch_num is not None and sample_patch_num < image_num_patches:
            patch_orders = [
                random.sample(range(image_num_patches), k=sample_patch_num)
                for _ in range(patch_images.size(0))
            ]
            patch_orders = torch.LongTensor(patch_orders).to(device)
            image_embed = image_embed.gather(
                1, patch_orders.unsqueeze(2).expand(-1, -1, image_embed.size(2))
            )
            image_num_patches = sample_patch_num
            image_padding_mask = image_padding_mask.gather(1, patch_orders)
            image_position_ids = image_position_ids.gather(1, patch_orders)

        image_pos_embed = self.embed_video_positions(image_position_ids)


        image_embed = self.video_proj(image_embed)

        if self.layernorm_video_embedding is not None:
            image_embed = self.layernorm_video_embedding(image_embed)
        
        return image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed

    def get_patch_images_info(self, patch_images, sample_patch_num, device):
        if self.nograd and self.freeze_image_encoder:
            with torch.no_grad():
                image_embed = self.embed_images(patch_images)
        else:
            image_embed = self.embed_images(patch_images)

        if isinstance(image_embed, tuple):
            _, image_embed = image_embed

        h, w = image_embed.shape[-2:]
        image_num_patches = h * w
        image_embed = image_embed.flatten(2).transpose(1, 2)
        image_padding_mask = patch_images.new_zeros((patch_images.size(0), image_num_patches)).bool()
        image_position_idx = torch.arange(w).unsqueeze(0).expand(h, w) + \
                             torch.arange(h).unsqueeze(1) * self.args.image_bucket_size + 1
        image_position_idx = image_position_idx.view(-1).to(device)
        image_position_ids = image_position_idx[None, :].expand(patch_images.size(0), image_num_patches)

        if sample_patch_num is not None and sample_patch_num < image_num_patches:
            patch_orders = [
                random.sample(range(image_num_patches), k=sample_patch_num)
                for _ in range(patch_images.size(0))
            ]
            patch_orders = torch.LongTensor(patch_orders).to(device)
            image_embed = image_embed.gather(
                1, patch_orders.unsqueeze(2).expand(-1, -1, image_embed.size(2))
            )
            image_num_patches = sample_patch_num
            image_padding_mask = image_padding_mask.gather(1, patch_orders)
            image_position_ids = image_position_ids.gather(1, patch_orders)
        orig_num_patches = (self.orig_patch_image_size // 16) ** 2
        orig_hw= self.orig_patch_image_size // 16
        if getattr(self.args, "interpolate_position", False) and image_num_patches > orig_num_patches:
            old_image_position_ids = torch.arange(orig_hw).unsqueeze(0).expand(orig_hw, orig_hw) + \
                                     torch.arange(orig_hw).unsqueeze(1) * self.args.image_bucket_size + 1
            old_image_position_ids = old_image_position_ids.to(device)
            old_image_pos_embed = self.embed_image_positions(old_image_position_ids)
            old_image_pos_embed = old_image_pos_embed.reshape(1, orig_hw, orig_hw, -1).permute(0, 3, 1, 2)
            image_pos_embed = F.interpolate(old_image_pos_embed, size=(h, w), mode='bilinear')
            image_pos_embed = image_pos_embed.permute(0, 2, 3, 1).reshape(1, image_num_patches, -1)
            image_pos_embed = image_pos_embed.expand(patch_images.size(0), -1, -1)
        else:
            image_pos_embed = self.embed_image_positions(image_position_ids)



        image_embed = self.image_proj(image_embed)
        if self.layernorm_image_embedding is not None:
            image_embed = self.layernorm_image_embedding(image_embed)

        return image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed

    def get_encoder_prompt(self, prompt_tokens):
        past_key_values = self.encoder_prompt_encoder(prompt_tokens)
        bsz, seqlen, _ = past_key_values.shape
        past_key_values = past_key_values.view(
            bsz,
            seqlen,
            (self.args.encoder_layers) * 2,
            self.args.encoder_attention_heads,
            self.args.encoder_embed_dim // self.args.encoder_attention_heads,
        )
        past_key_values = self.encoder_dropout(past_key_values)
        past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
        return past_key_values
    
    def forward_embedding(
        self,
        src_tokens,
        image_embed: Optional[torch.Tensor] = None,
        image_embed_2: Optional[torch.Tensor] = None,
        token_embedding: Optional[torch.Tensor] = None,
        pos_embed: Optional[torch.Tensor] = None,
        image_pos_embed: Optional[torch.Tensor] = None,
        image_pos_embed_2: Optional[torch.Tensor] = None,
        patch_types: Optional[torch.Tensor] = None,
    ):
        # embed tokens and positions
        if token_embedding is None:
            token_embedding = self.embed_tokens(src_tokens)
        x = embed = self.embed_scale * token_embedding
        if self.entangle_position_embedding and pos_embed is not None:
            x += pos_embed
        if self.type_embedding is not None:
            x += self.type_embedding(src_tokens.new_zeros(x.size()[:2]))
        if self.layernorm_embedding is not None:
            x = self.layernorm_embedding(x)
        x = self.dropout_module(x)
        if self.quant_noise is not None:
            x = self.quant_noise(x)

        # embed raw images
        if image_embed is not None:
            # image_embed = self.image_proj(image_embed)
            image_x = image_embed = self.embed_scale * image_embed
            if self.entangle_position_embedding and image_pos_embed is not None:
                image_x += image_pos_embed[:, -image_x.shape[1]:, :] # account for cls token
            if self.type_embedding is not None:
                if self.mm_type_embedding:
                    mm_type = patch_types.unsqueeze(1).to(src_tokens.device) + 1 # 0 for text
                    image_x += self.type_embedding(mm_type)
                else:
                    image_x += self.type_embedding(src_tokens.new_ones(image_x.size()[:2]))
            if self.patch_layernorm_embedding is not None:
                image_x = self.patch_layernorm_embedding(image_x)
            image_x = self.dropout_module(image_x)
            if self.quant_noise is not None:
                image_x = self.quant_noise(image_x)
            x = torch.cat([image_x, x], dim=1)
            embed = torch.cat([image_embed, embed], dim=1)

        if image_embed_2 is not None:
            assert self.type_embedding is not None
            # image_embed_2 = self.image_proj(image_embed_2)
            image_x_2 = image_embed_2 = self.embed_scale * image_embed_2
            if self.entangle_position_embedding and image_pos_embed_2 is not None:
                image_x_2 += image_pos_embed_2[:, -image_x_2.shape[1]:, :]
            if self.type_embedding is not None:
                image_x_2 += self.type_embedding(src_tokens.new_full(image_x_2.size()[:2], fill_value=2))
            if self.patch_layernorm_embedding is not None:
                image_x_2 = self.patch_layernorm_embedding(image_x_2)
            image_x_2 = self.dropout_module(image_x_2)
            if self.quant_noise is not None:
                image_x_2 = self.quant_noise(image_x_2)
            x = torch.cat([image_x_2, x], dim=1)
            embed = torch.cat([image_embed_2, embed], dim=1)

        return x, embed

    def forward(
        self,
        src_tokens,
        src_lengths,
        patch_images: Optional[torch.Tensor] = None,
        patch_images_2: Optional[torch.Tensor] = None,
        patch_masks: Optional[torch.Tensor] = None,
        code_masks: Optional[torch.Tensor] = None,
        return_all_hiddens: bool = False,
        token_embeddings: Optional[torch.Tensor] = None,
        sample_patch_num: Optional[int] = None,
        patch_videos: Optional[int] = None,
        patch_types: Optional[torch.Tensor] = None,
        patch_audios: Optional[torch.Tensor] = None,
    ):
        """
        Args:
            src_tokens (LongTensor): tokens in the source language of shape
                `(batch, src_len)`
            src_lengths (torch.LongTensor): lengths of each source sentence of
                shape `(batch)`
            return_all_hiddens (bool, optional): also return all of the
                intermediate hidden states (default: False).
            token_embeddings (torch.Tensor, optional): precomputed embeddings
                default `None` will recompute embeddings

        Returns:
            dict:
                - **encoder_out** (Tensor): the last encoder layer's output of
                  shape `(src_len, batch, embed_dim)`
                - **encoder_padding_mask** (ByteTensor): the positions of
                  padding elements of shape `(batch, src_len)`
                - **encoder_embedding** (Tensor): the (scaled) embedding lookup
                  of shape `(batch, src_len, embed_dim)`
                - **encoder_states** (List[Tensor]): all intermediate
                  hidden states of shape `(src_len, batch, embed_dim)`.
                  Only populated if *return_all_hiddens* is True.
        """
        return self.forward_scriptable(src_tokens,
                                       src_lengths,
                                       patch_images,
                                       patch_images_2,
                                       patch_masks,
                                       return_all_hiddens,
                                       token_embeddings,
                                       self.sample_patch_num,
                                       patch_videos=patch_videos,
                                       patch_types=patch_types,
                                       patch_audios=patch_audios,
                                       sample_audio_patch_num=self.sample_audio_patch_num,
                                       sample_video_patch_num=self.sample_video_patch_num)

    # TorchScript doesn't support super() method so that the scriptable Subclass
    # can't access the base class model in Torchscript.
    # Current workaround is to add a helper function with different name and
    # call the helper function from scriptable Subclass.
    def forward_scriptable(
        self,
        src_tokens,
        src_lengths,
        patch_images: Optional[torch.Tensor] = None,
        patch_images_2: Optional[torch.Tensor] = None,
        patch_masks: Optional[torch.Tensor] = None,
        return_all_hiddens: bool = False,
        token_embeddings: Optional[torch.Tensor] = None,
        sample_patch_num: Optional[int] = None,
        patch_videos: Optional[int] = None,
        patch_types: Optional[torch.Tensor] = None,
        patch_audios:  Optional[int] = None,
        sample_audio_patch_num: Optional[int] = None,
        sample_video_patch_num: Optional[int] = None,
    ):
        """
        Args:
            src_tokens (LongTensor): tokens in the source language of shape
                `(batch, src_len)`
            src_lengths (torch.LongTensor): lengths of each source sentence of
                shape `(batch)`
            return_all_hiddens (bool, optional): also return all of the
                intermediate hidden states (default: False).
            token_embeddings (torch.Tensor, optional): precomputed embeddings
                default `None` will recompute embeddings

        Returns:
            dict:
                - **encoder_out** (Tensor): the last encoder layer's output of
                  shape `(src_len, batch, embed_dim)`
                - **encoder_padding_mask** (ByteTensor): the positions of
                  padding elements of shape `(batch, src_len)`
                - **encoder_embedding** (Tensor): the (scaled) embedding lookup
                  of shape `(batch, src_len, embed_dim)`
                - **encoder_states** (List[Tensor]): all intermediate
                  hidden states of shape `(src_len, batch, embed_dim)`.
                  Only populated if *return_all_hiddens* is True.
        """
        prompt_tokens = None
        prompt_padding_mask = None
        prompt_kv_list = None
        if self.args.encoder_prompt:
            bsz, seq_len = src_tokens.shape[0], src_tokens.shape[1]
            if self.args.encoder_prompt_type in ("prefix"):
                prompt_tokens = torch.arange(
                    0, self.args.encoder_prompt_length).to(
                    src_tokens.device)
                prompt_tokens = prompt_tokens.unsqueeze(0).expand(bsz, -1)
                prompt_padding_mask = torch.zeros_like(prompt_tokens).to(prompt_tokens.device)
            prompt_kv_list = self.get_encoder_prompt(prompt_tokens)
        image_embed = None
        image_embed_2 = None
        image_pos_embed = None
        image_pos_embed_2 = None
        num_image_tokens = None

        if sample_audio_patch_num is None:
            sample_audio_patch_num = sample_patch_num

        if sample_video_patch_num is None:
            sample_video_patch_num = sample_patch_num

        if patch_images is not None:

            if patch_types is not None:
                video_idx = patch_types==1
                image_idx = patch_types==0
                audio_idx = patch_types==2

                image_idx_ = (patch_types==0).nonzero()[:, 0]
                video_idx_ = (patch_types==1).nonzero()[:, 0]
                audio_idx_ = (patch_types==2).nonzero()[:, 0]

                image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed = None,None,None,None,None
                # print(image_idx_, video_idx_, audio_idx_)
                if torch.any(image_idx).item():
                    image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed = \
                        self.get_patch_images_info(patch_images, sample_patch_num, src_tokens.device)

                    ids_merge = image_idx_

                if torch.any(video_idx).item():
                    video_embed, image_num_patches, video_padding_mask, video_position_ids, video_pos_embed = \
                        self.get_patch_videos_info(patch_videos[video_idx], sample_video_patch_num, src_tokens.device)

                    if image_embed is not None:
                        ids_merge = torch.cat((ids_merge, video_idx_), dim=0).long()

                        image_embed = torch.cat((image_embed, video_embed), dim=0)
                        bs, L, D = image_embed.shape
                        image_padding_mask = torch.cat((image_padding_mask, video_padding_mask), dim=0)
                        image_position_ids = torch.cat((image_position_ids, video_position_ids), dim=0)
                        image_pos_embed = torch.cat((image_pos_embed, video_pos_embed), dim=0)
                        
                        image_embed = torch.gather(image_embed, dim=0, index=ids_merge[:, None, None].repeat(1, L, D))
                        image_padding_mask = torch.gather(image_padding_mask, dim=0, index=ids_merge[:, None].repeat(1, image_padding_mask.shape[1]))
                        image_position_ids = torch.gather(image_position_ids, dim=0, index=ids_merge[:, None].repeat(1, image_position_ids.shape[1]))
                        image_pos_embed = torch.gather(image_pos_embed, dim=0, index=ids_merge[:, None, None].repeat(1, image_pos_embed.shape[1], D))

                    else:
                        image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed = \
                            video_embed, image_num_patches, video_padding_mask, video_position_ids, video_pos_embed
                        ids_merge = video_idx_

                if torch.any(audio_idx).item() : # or image_embed is None
                    audio_embed, image_num_patches, audio_padding_mask, audio_position_ids, audio_pos_embed = \
                        self.get_patch_audios_info(patch_audios[audio_idx], sample_audio_patch_num, src_tokens.device)

                    if image_embed is not None:

                        ids_merge = torch.cat((ids_merge, audio_idx_), dim=0).long()


                        image_embed = torch.cat((image_embed, audio_embed), dim=0)
                        bs, L, D = image_embed.shape
                        image_padding_mask = torch.cat((image_padding_mask, audio_padding_mask), dim=0)
                        image_position_ids = torch.cat((image_position_ids, audio_position_ids), dim=0)
                        image_pos_embed = torch.cat((image_pos_embed, audio_pos_embed), dim=0)
                        
                        image_embed = torch.gather(image_embed, dim=0, index=ids_merge[:, None, None].repeat(1, L, D))
                        image_padding_mask = torch.gather(image_padding_mask, dim=0, index=ids_merge[:, None].repeat(1, image_padding_mask.shape[1]))
                        image_position_ids = torch.gather(image_position_ids, dim=0, index=ids_merge[:, None].repeat(1, image_position_ids.shape[1]))
                        image_pos_embed = torch.gather(image_pos_embed, dim=0, index=ids_merge[:, None, None].repeat(1, image_pos_embed.shape[1], D))

                    else:
                        image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed = \
                            audio_embed, image_num_patches, audio_padding_mask, audio_position_ids, audio_pos_embed

            else:
                image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed = \
            self.get_patch_images_info(patch_images, sample_patch_num, src_tokens.device)

            image_padding_mask[~patch_masks] = True

            num_image_tokens=image_num_patches
        if patch_images_2 is not None:
            image_embed_2, image_num_patches_2, image_padding_mask_2, image_position_ids_2, image_pos_embed_2 = \
                self.get_patch_images_info(patch_images_2, sample_patch_num, src_tokens.device)
            image_padding_mask_2[~patch_masks] = True
            num_image_tokens+=image_num_patches_2

        encoder_padding_mask = src_tokens.eq(self.padding_idx)
        if patch_images is not None:
            encoder_padding_mask = torch.cat([image_padding_mask, encoder_padding_mask], dim=1)
        if patch_images_2 is not None:
            encoder_padding_mask = torch.cat([image_padding_mask_2, encoder_padding_mask], dim=1)
        has_pads = (src_tokens.device.type == "xla" or encoder_padding_mask.any())

        pos_embed = self.embed_positions(utils.new_arange(src_tokens))
        x, encoder_embedding = self.forward_embedding(
            src_tokens, image_embed, image_embed_2, token_embeddings,
            pos_embed, image_pos_embed, image_pos_embed_2, patch_types=patch_types
        )

        # account for padding while computing the representation
        if has_pads:
            x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        pos_embed = self.pos_ln(pos_embed)
        if patch_images is not None:
            image_pos_embed = self.image_pos_ln(image_pos_embed)
            pos_embed = torch.cat([image_pos_embed, pos_embed], dim=1)
        if patch_images_2 is not None:
            image_pos_embed_2 = self.image_pos_ln(image_pos_embed_2)
            pos_embed = torch.cat([image_pos_embed_2, pos_embed], dim=1)

        pos_q = self.pos_q_linear(pos_embed).view(
            pos_embed.size(0), pos_embed.size(1), self.num_attention_heads, -1
        ).transpose(1, 2) * self.pos_scaling
        pos_k = self.pos_k_linear(pos_embed).view(
            pos_embed.size(0), pos_embed.size(1), self.num_attention_heads, -1
        ).transpose(1, 2)
        abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3))

        encoder_states = []

        if return_all_hiddens:
            encoder_states.append(x)

        if prompt_padding_mask is not None:
            encoder_padding_mask = torch.cat([prompt_padding_mask, encoder_padding_mask], dim=1)
        # encoder layers
        if self.with_cls:
            offset_rel_pos = 1
            abs_pos_bias = F.pad(abs_pos_bias, (1, 0, 1, 0), "constant", 0)
        else:
            offset_rel_pos = 0
            
        for idx, layer in enumerate(self.layers):
            self_attn_bias = abs_pos_bias.clone()
            self_attn_bias[:, :, -src_tokens.size(1):, -src_tokens.size(1):] += self.get_rel_pos_bias(src_tokens, idx)
            if patch_images_2 is not None:
                self_attn_bias[:, :, offset_rel_pos:image_num_patches_2, offset_rel_pos:image_num_patches_2] += \
                    self.get_image_rel_pos_bias(image_position_ids_2, idx)
                self_attn_bias[:, :, offset_rel_pos+image_num_patches_2:image_num_patches_2+image_num_patches, offset_rel_pos+image_num_patches_2:image_num_patches_2+image_num_patches] += \
                    self.get_image_rel_pos_bias(image_position_ids, idx)
            elif patch_images is not None:
                self_attn_bias[:, :, offset_rel_pos:x.size(0) - src_tokens.size(1), offset_rel_pos:x.size(0) - src_tokens.size(1)] += \
                    self.get_image_rel_pos_bias(image_position_ids, idx)

            self_attn_bias = self_attn_bias.reshape(-1, self_attn_bias.size(2), self_attn_bias.size(2))

            if self.args.encoder_prompt:
                if self.args.encoder_prompt_type != "prompt":
                    prompt_kv = prompt_kv_list[idx]
                else:
                    if idx == 0:
                        prompt_kv = prompt_kv_list[idx]
                    else:
                        prompt_kv = None
            else:
                prompt_kv = None 
            x = layer(x, encoder_padding_mask=encoder_padding_mask if has_pads else None, \
                    self_attn_bias=self_attn_bias, prompt_kv=prompt_kv, num_image_tokens=num_image_tokens)
            if return_all_hiddens:
                assert encoder_states is not None
                encoder_states.append(x)

        if self.layer_norm is not None:
            x = self.layer_norm(x)
        if self.args.encoder_prompt:
            encoder_padding_mask = encoder_padding_mask[:, prompt_tokens.size(1):]
        # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
        # `forward` so we use a dictionary instead.
        # TorchScript does not support mixed values so the values are all lists.
        # The empty list is equivalent to None.
        return {
            "encoder_out": [x],  # T x B x C
            "encoder_padding_mask": [encoder_padding_mask],  # B x T
            "encoder_embedding": [],  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "src_tokens": [],
            "src_lengths": [],
            "position_embeddings": [pos_embed],  # B x T x C
        }

    @torch.jit.export
    def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order):
        """
        Reorder encoder output according to *new_order*.

        Args:
            encoder_out: output from the ``forward()`` method
            new_order (LongTensor): desired order

        Returns:
            *encoder_out* rearranged according to *new_order*
        """
        if len(encoder_out["encoder_out"]) == 0:
            new_encoder_out = []
        else:
            new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)]
        if len(encoder_out["encoder_padding_mask"]) == 0:
            new_encoder_padding_mask = []
        else:
            new_encoder_padding_mask = [
                encoder_out["encoder_padding_mask"][0].index_select(0, new_order)
            ]
        if len(encoder_out["encoder_embedding"]) == 0:
            new_encoder_embedding = []
        else:
            new_encoder_embedding = [
                encoder_out["encoder_embedding"][0].index_select(0, new_order)
            ]

        if len(encoder_out["src_tokens"]) == 0:
            new_src_tokens = []
        else:
            new_src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)]

        if len(encoder_out["src_lengths"]) == 0:
            new_src_lengths = []
        else:
            new_src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)]

        if len(encoder_out["position_embeddings"]) == 0:
            new_position_embeddings = []
        else:
            new_position_embeddings = [(encoder_out["position_embeddings"][0]).index_select(0, new_order)]

        encoder_states = encoder_out["encoder_states"]
        if len(encoder_states) > 0:
            for idx, state in enumerate(encoder_states):
                encoder_states[idx] = state.index_select(1, new_order)

        return {
            "encoder_out": new_encoder_out,  # T x B x C
            "encoder_padding_mask": new_encoder_padding_mask,  # B x T
            "encoder_embedding": new_encoder_embedding,  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "src_tokens": new_src_tokens,  # B x T
            "src_lengths": new_src_lengths,  # B x 1
            "position_embeddings": new_position_embeddings,  # B x T x C
        }

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        if self.embed_positions is None:
            return self.max_source_positions
        return self.max_source_positions

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions of fairseq."""
        if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
            weights_key = "{}.embed_positions.weights".format(name)
            if weights_key in state_dict:
                print("deleting {0}".format(weights_key))
                del state_dict[weights_key]
            state_dict[
                "{}.embed_positions._float_tensor".format(name)
            ] = torch.FloatTensor(1)
        for i in range(self.num_layers):
            # update layer norms
            self.layers[i].upgrade_state_dict_named(
                state_dict, "{}.layers.{}".format(name, i)
            )

        prefix = name + "." if name != "" else ""
        for param_name, param_tensor in self.state_dict().items():
            if (prefix + param_name) not in state_dict:
                state_dict[prefix + param_name] = self.state_dict()[param_name]

        if len(state_dict["encoder.embed_image_positions.weight"]) < len(self.state_dict()["embed_image_positions.weight"]):
            num_posids_to_add = len(self.state_dict()["embed_image_positions.weight"]) - len(state_dict["encoder.embed_image_positions.weight"])
            embed_dim = state_dict["encoder.embed_image_positions.weight"].size(1)
            new_pos_embed_to_add = torch.zeros(num_posids_to_add, embed_dim)
            nn.init.normal_(new_pos_embed_to_add, mean=0, std=embed_dim ** -0.5)
            new_pos_embed_to_add = new_pos_embed_to_add.to(
                dtype=state_dict["encoder.embed_image_positions.weight"].dtype,
            )
            state_dict["encoder.embed_image_positions.weight"] = torch.cat(
                [state_dict["encoder.embed_image_positions.weight"], new_pos_embed_to_add]
            )
        return state_dict


class TransformerDecoder(FairseqIncrementalDecoder):
    """
    Transformer decoder consisting of *args.decoder_layers* layers. Each layer
    is a :class:`TransformerDecoderLayer`.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): decoding dictionary
        embed_tokens (torch.nn.Embedding): output embedding
        no_encoder_attn (bool, optional): whether to attend to encoder outputs
            (default: False).
    """

    def __init__(
        self,
        args,
        dictionary,
        embed_tokens,
        no_encoder_attn=False,
        output_projection=None,
    ):
        self.args = args
        super().__init__(dictionary)
        self.register_buffer("version", torch.Tensor([3]))
        self._future_mask = torch.empty(0)
        self.with_cls = getattr(args, "with_cls", False)

        if getattr(args, "decoder_prompt", False):
            self.decoder_prompt_encoder = PromptEncoder(
                type=args.decoder_prompt_type,
                length=args.decoder_prompt_length,
                projection=args.decoder_prompt_projection,
                embed_dim=args.decoder_embed_dim,
                proj_dim=args.decoder_prompt_dim,
                layers=args.decoder_layers,
                vocab_size=args.vocab_size)
            self.decoder_dropout = nn.Dropout(p=0.2)

        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )
        self.decoder_layerdrop = args.decoder_layerdrop
        self.share_input_output_embed = args.share_decoder_input_output_embed
        self.num_attention_heads = args.decoder_attention_heads

        input_embed_dim = embed_tokens.embedding_dim
        embed_dim = args.decoder_embed_dim
        self.embed_dim = embed_dim
        self.output_embed_dim = args.decoder_output_dim

        self.padding_idx = embed_tokens.padding_idx
        self.max_target_positions = args.max_target_positions

        self.embed_tokens = embed_tokens

        self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)

        if not args.adaptive_input and args.quant_noise_pq > 0:
            self.quant_noise = apply_quant_noise_(
                nn.Linear(embed_dim, embed_dim, bias=False),
                args.quant_noise_pq,
                args.quant_noise_pq_block_size,
            )
        else:
            self.quant_noise = None

        self.project_in_dim = (
            Linear(input_embed_dim, embed_dim, bias=False)
            if embed_dim != input_embed_dim
            else None
        )

        if getattr(args, "layernorm_embedding", False):
            self.layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_embedding = None

        self.window_size = args.code_image_size // 8

        self.embed_positions = Embedding(args.max_target_positions + 2, embed_dim)
        self.embed_image_positions = Embedding(args.image_bucket_size ** 2 + 1, embed_dim)
        self.pos_ln = LayerNorm(embed_dim)
        self.image_pos_ln = LayerNorm(embed_dim)
        self.pos_scaling = float(embed_dim / self.num_attention_heads * args.attn_scale_factor) ** -0.5
        self.self_pos_q_linear = nn.Linear(embed_dim, embed_dim)
        self.self_pos_k_linear = nn.Linear(embed_dim, embed_dim)
        self.cross_pos_q_linear = nn.Linear(embed_dim, embed_dim)
        self.cross_pos_k_linear = nn.Linear(embed_dim, embed_dim)

        if getattr(args, "code_layernorm_embedding", False):
            self.code_layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.code_layernorm_embedding = None

        self.cross_self_attention = getattr(args, "cross_self_attention", False)

        if self.decoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.decoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])

        dpr = [x.item() for x in torch.linspace(0, args.decoder_drop_path_rate, args.decoder_layers)]
        self.layers.extend(
            [
                self.build_decoder_layer(args, no_encoder_attn, drop_path_rate=dpr[i])
                for i in range(args.decoder_layers)
            ]
        )
        self.num_layers = len(self.layers)

        if args.decoder_normalize_before:
            self.layer_norm = LayerNorm(embed_dim)
        else:
            self.layer_norm = None

        self.project_out_dim = (
            Linear(embed_dim, self.output_embed_dim, bias=False)
            if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights
            else None
        )

        self.adaptive_softmax = None
        self.output_projection = output_projection
        if self.output_projection is None:
            self.build_output_projection(args, dictionary, embed_tokens)

        token_bucket_size = args.token_bucket_size
        token_num_rel_dis = 2 * token_bucket_size - 1
        token_rp_bucket = make_token_bucket_position(token_bucket_size)
        self.token_rel_pos_table_list = nn.ModuleList(
            [Embedding(token_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.decoder_layers)]
        )

        image_bucket_size = args.image_bucket_size
        image_num_rel_dis = (2 * image_bucket_size - 1) * (2 * image_bucket_size - 1) + 3
        image_rp_bucket = make_image_bucket_position(image_bucket_size, image_num_rel_dis)
        image_position_idx = torch.arange(self.window_size).unsqueeze(0).expand(self.window_size, self.window_size) + \
                             torch.arange(self.window_size).unsqueeze(1) * image_bucket_size + 1
        image_position_idx = torch.cat([torch.tensor([0]), image_position_idx.view(-1)])
        image_position_idx = torch.cat([image_position_idx, torch.tensor([1024] * 769)])
        self.image_rel_pos_table_list = nn.ModuleList(
            [Embedding(image_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.decoder_layers)]
        )

        self.register_buffer("token_rp_bucket", token_rp_bucket)
        self.register_buffer("image_rp_bucket", image_rp_bucket)
        self.register_buffer("image_position_idx", image_position_idx)
        self.entangle_position_embedding = args.entangle_position_embedding

    def get_decoder_prompt(self, prompt_tokens):
        past_key_values = self.decoder_prompt_encoder(prompt_tokens)
        bsz, seqlen, _ = past_key_values.shape
        past_key_values = past_key_values.view(
            bsz,
            seqlen,
            self.args.decoder_layers * 2,
            self.args.decoder_attention_heads,
            self.args.decoder_embed_dim // self.args.decoder_attention_heads,
        )
        past_key_values = self.decoder_dropout(past_key_values)
        past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
        return past_key_values

    def build_output_projection(self, args, dictionary, embed_tokens):
        if args.adaptive_softmax_cutoff is not None:
            self.adaptive_softmax = AdaptiveSoftmax(
                len(dictionary),
                self.output_embed_dim,
                utils.eval_str_list(args.adaptive_softmax_cutoff, type=int),
                dropout=args.adaptive_softmax_dropout,
                adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None,
                factor=args.adaptive_softmax_factor,
                tie_proj=args.tie_adaptive_proj,
            )
        elif self.share_input_output_embed:
            self.output_projection = nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            self.output_projection.weight = self.embed_tokens.weight
        else:
            self.output_projection = nn.Linear(
                self.output_embed_dim, len(dictionary), bias=False
            )
            nn.init.normal_(
                self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5
            )
        num_base_layers = getattr(args, "base_layers", 0)
        for i in range(num_base_layers):
            self.layers.insert(((i+1) * args.decoder_layers) // (num_base_layers + 1), BaseLayer(args))

    def build_decoder_layer(self, args, no_encoder_attn=False, drop_path_rate=0.0):
        layer = TransformerDecoderLayer(args, no_encoder_attn, drop_path_rate= \
            drop_path_rate, use_adapter=getattr(args, "adapter", False), adapter_dim=getattr(args, "adapter_dim", 200))
        checkpoint = getattr(args, "checkpoint_activations", False)
        if checkpoint:
            offload_to_cpu = getattr(args, "offload_activations", False)
            layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu)
        # if we are checkpointing, enforce that FSDP always wraps the
        # checkpointed layer, regardless of layer size
        min_params_to_wrap = (
            getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP)
            if not checkpoint else 0
        )
        layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap)
        return layer

    def get_rel_pos_bias(self, x, idx):
        seq_len = x.size(1)
        rp_bucket = self.token_rp_bucket[:seq_len, :seq_len]
        values = F.embedding(rp_bucket, self.token_rel_pos_table_list[idx].weight)
        values = values.permute([2, 0, 1])
        return values.contiguous()

    def get_image_rel_pos_bias(self, x, idx):
        seq_len = x.size(1)
        image_position_idx = self.image_position_idx[:seq_len]
        rp_bucket = self.image_rp_bucket[image_position_idx][:, image_position_idx]
        values = F.embedding(rp_bucket, self.image_rel_pos_table_list[idx].weight)
        values = values.permute(2, 0, 1)
        return values

    def get_pos_info(self, tokens, tgt_pos_embed, src_pos_embed=None, use_image=False):
        batch_size = tokens.size(0)
        tgt_len = tokens.size(1)
        tgt_pos_embed = self.image_pos_ln(tgt_pos_embed) if use_image else self.pos_ln(tgt_pos_embed)
        if src_pos_embed is not None:
            src_len = src_pos_embed.size(1)
            pos_q = self.cross_pos_q_linear(tgt_pos_embed).view(
                batch_size, tgt_len, self.num_attention_heads, -1
            ).transpose(1, 2) * self.pos_scaling
            pos_k = self.cross_pos_k_linear(src_pos_embed).view(
                batch_size, src_len, self.num_attention_heads, -1
            ).transpose(1, 2)
        else:
            src_len = tgt_pos_embed.size(1)
            pos_q = self.self_pos_q_linear(tgt_pos_embed).view(
                batch_size, tgt_len, self.num_attention_heads, -1
            ).transpose(1, 2) * self.pos_scaling
            pos_k = self.self_pos_k_linear(tgt_pos_embed).view(
                batch_size, src_len, self.num_attention_heads, -1
            ).transpose(1, 2)
        abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3))
        return abs_pos_bias

    def forward(
        self,
        prev_output_tokens,
        code_masks: Optional[torch.Tensor] = None,
        encoder_out: Optional[Dict[str, List[Tensor]]] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        features_only: bool = False,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
        src_lengths: Optional[Any] = None,
        return_all_hiddens: bool = False,
    ):
        """
        Args:
            prev_output_tokens (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_out (optional): output from the encoder, used for
                encoder-side attention, should be of size T x B x C
            incremental_state (dict): dictionary used for storing state during
                :ref:`Incremental decoding`
            features_only (bool, optional): only return features without
                applying output layer (default: False).
            full_context_alignment (bool, optional): don't apply
                auto-regressive mask to self-attention (default: False).

        Returns:
            tuple:
                - the decoder's output of shape `(batch, tgt_len, vocab)`
                - a dictionary with any model-specific outputs
        """
        # print(self.training, "encoder_out", encoder_out['encoder_out'][0][0])
        x, extra = self.extract_features(
            prev_output_tokens,
            code_masks=code_masks,
            encoder_out=encoder_out,
            incremental_state=incremental_state,
            full_context_alignment=full_context_alignment,
            alignment_layer=alignment_layer,
            alignment_heads=alignment_heads,
        )

        if not features_only:
            x = self.output_layer(x)
        return x, extra

    def extract_features(
        self,
        prev_output_tokens,
        code_masks: Optional[torch.Tensor],
        encoder_out: Optional[Dict[str, List[Tensor]]],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        return self.extract_features_scriptable(
            prev_output_tokens,
            code_masks,
            encoder_out,
            incremental_state,
            full_context_alignment,
            alignment_layer,
            alignment_heads,
        )

    """
    A scriptable subclass of this class has an extract_features method and calls
    super().extract_features, but super() is not supported in torchscript. A copy of
    this function is made to be used in the subclass instead.
    """

    def extract_features_scriptable(
        self,
        prev_output_tokens,
        code_masks: Optional[torch.Tensor],
        encoder_out: Optional[Dict[str, List[Tensor]]],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        """
        Similar to *forward* but only return features.

        Includes several features from "Jointly Learning to Align and
        Translate with Transformer Models" (Garg et al., EMNLP 2019).

        Args:
            full_context_alignment (bool, optional): don't apply
                auto-regressive mask to self-attention (default: False).
            alignment_layer (int, optional): return mean alignment over
                heads at this layer (default: last layer).
            alignment_heads (int, optional): only average alignment over
                this many heads (default: all heads).

        Returns:
            tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - a dictionary with any model-specific outputs
        """
        prompt_tokens = None
        prompt_padding_mask = None
        prompt_kv_list = None
        if self.args.decoder_prompt:
            bsz, seq_len = prev_output_tokens.shape[0], prev_output_tokens.shape[1]
            if self.args.decoder_prompt_type in ("prefix"):
                prompt_tokens = torch.arange(
                    0, self.args.decoder_prompt_length).to(
                    prev_output_tokens.device)
                prompt_tokens = prompt_tokens.unsqueeze(0).expand(bsz, -1)
                prompt_padding_mask = torch.zeros_like(prompt_tokens).to(prompt_tokens.device)
            prompt_kv_list = self.get_decoder_prompt(prompt_tokens)
        bs, slen = prev_output_tokens.size()
        if alignment_layer is None:
            alignment_layer = self.num_layers - 1

        enc: Optional[Tensor] = None
        padding_mask: Optional[Tensor] = None
        if encoder_out is not None and len(encoder_out["encoder_out"]) > 0:
            enc = encoder_out["encoder_out"][0]
            assert (
                enc.size()[1] == bs
            ), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}"
        if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0:
            padding_mask = encoder_out["encoder_padding_mask"][0]

        bsz, tgt_len = prev_output_tokens.shape
        token_position_idx = utils.new_arange(prev_output_tokens)
        tgt_pos_embed = self.embed_positions(token_position_idx)
        if code_masks is not None and torch.any(code_masks):
            image_position_idx = self.image_position_idx[:prev_output_tokens.size(1)].unsqueeze(0).expand(bsz, tgt_len)
            tgt_pos_embed[code_masks] = self.embed_image_positions(image_position_idx)[code_masks]

        # self attn position bias
        self_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, use_image=False)
        if code_masks is not None and torch.any(code_masks):
            self_image_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, use_image=True)
            self_abs_pos_bias[code_masks] = self_image_abs_pos_bias[code_masks]
        # cross attn position bias
        src_pos_embed = encoder_out['position_embeddings'][0]
        cross_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, src_pos_embed=src_pos_embed)



        if code_masks is not None and torch.any(code_masks):
            cross_image_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, src_pos_embed=src_pos_embed, use_image=True)
            cross_abs_pos_bias[code_masks] = cross_image_abs_pos_bias[code_masks]
        
        if self.with_cls:
            cross_abs_pos_bias = F.pad(cross_abs_pos_bias, (enc.shape[0] - cross_abs_pos_bias.shape[-1], 0, prev_output_tokens.shape[1] - cross_abs_pos_bias.shape[2], 0), "constant", 0)


        cross_abs_pos_bias = cross_abs_pos_bias.reshape(-1, *cross_abs_pos_bias.size()[-2:])

        all_prev_output_tokens = prev_output_tokens.clone()
        # print(all_prev_output_tokens.shape, prev_output_tokens.shape, tgt_pos_embed.shape, self_abs_pos_bias.shape)
        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:]
            cross_abs_pos_bias = cross_abs_pos_bias[:, -1:, :]
            tgt_pos_embed = tgt_pos_embed[:, -1:, :]

        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(prev_output_tokens)

        if self.quant_noise is not None:
            x = self.quant_noise(x)

        if self.project_in_dim is not None:
            x = self.project_in_dim(x)

        if self.entangle_position_embedding is not None and not self.args.disable_entangle:
            x += tgt_pos_embed

        if self.layernorm_embedding is not None:
            if code_masks is None or not code_masks.any() or not getattr(self, "code_layernorm_embedding", False):
                x = self.layernorm_embedding(x)
            elif code_masks is not None and code_masks.all():
                x = self.code_layernorm_embedding(x)
            else:
                x[~code_masks] = self.layernorm_embedding(x[~code_masks])
                x[code_masks] = self.code_layernorm_embedding(x[code_masks])

        x = self.dropout_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        self_attn_padding_mask: Optional[Tensor] = None
        if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any():
            self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)
            if prompt_padding_mask is not None:
                self_attn_padding_mask = torch.cat([prompt_padding_mask, self_attn_padding_mask], dim=1)

        # decoder layers
        attn: Optional[Tensor] = None
        inner_states: List[Optional[Tensor]] = [x]
        for idx, layer in enumerate(self.layers):
            if incremental_state is None and not full_context_alignment:
                self_attn_mask = self.buffered_future_mask(x)
                if self.args.decoder_prompt:
                    seq_len, prompt_len = x.size(0), prompt_tokens.size(1)
                    prompt_mask = torch.zeros([seq_len, prompt_len]).to(x.device)
                    self_attn_mask = torch.cat([prompt_mask, self_attn_mask], dim=1)
            else:
                self_attn_mask = None

            self_attn_bias = self_abs_pos_bias.clone()
            # print(self_attn_bias.shape, 'self_attn_bias')
            if code_masks is None or not code_masks.any():
                # try:
                self_attn_bias += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
                # except:
                #     print(idx, self_attn_bias.shape, all_prev_output_tokens.shape, self_abs_pos_bias.shape, incremental_state)
                #     self_attn_bias += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
            elif code_masks is not None and code_masks.all():
                self_attn_bias += self.get_image_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
            else:
                self_attn_bias[~code_masks] += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
                self_attn_bias[code_masks] += self.get_image_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
            self_attn_bias = self_attn_bias.reshape(-1, *self_attn_bias.size()[-2:])
            if incremental_state is not None:
                self_attn_bias = self_attn_bias[:, -1:, :]

            if self.args.decoder_prompt:
                if self.args.decoder_prompt_type != "prompt":
                    prompt_kv = prompt_kv_list[idx]
                else:
                    if idx == 0:
                        prompt_kv = prompt_kv_list[idx]
                    else:
                        prompt_kv = None
            else:
                prompt_kv = None

            x, layer_attn, _ = layer(
                x,
                enc,
                padding_mask,
                incremental_state,
                self_attn_mask=self_attn_mask,
                self_attn_padding_mask=self_attn_padding_mask,
                need_attn=bool((idx == alignment_layer)),
                need_head_weights=bool((idx == alignment_layer)),
                self_attn_bias=self_attn_bias,
                cross_attn_bias=cross_abs_pos_bias,
                prompt_kv=prompt_kv
            )
            inner_states.append(x)
            if layer_attn is not None and idx == alignment_layer:
                attn = layer_attn.float().to(x)

        if attn is not None:
            if alignment_heads is not None:
                attn = attn[:alignment_heads]

            # average probabilities over heads
            attn = attn.mean(dim=0)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        if self.project_out_dim is not None:
            x = self.project_out_dim(x)

        return x, {"attn": [attn], "inner_states": inner_states}

    def output_layer(self, features):
        """Project features to the vocabulary size."""
        if self.adaptive_softmax is None:
            # project back to size of vocabulary
            return self.output_projection(features)
        else:
            return features

    def max_positions(self):
        """Maximum output length supported by the decoder."""
        if self.embed_positions is None:
            return self.max_target_positions
        return self.max_target_positions

    def buffered_future_mask(self, tensor):
        dim = tensor.size(0)
        if (
            self._future_mask.size(0) == 0
            or (not self._future_mask.device == tensor.device)
            or self._future_mask.size(0) < dim
        ):
            self._future_mask = torch.triu(
                utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1
            )
        self._future_mask = self._future_mask.to(tensor)
        return self._future_mask[:dim, :dim]

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions of fairseq."""
        if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
            weights_key = "{}.embed_positions.weights".format(name)
            if weights_key in state_dict:
                del state_dict[weights_key]
            state_dict[
                "{}.embed_positions._float_tensor".format(name)
            ] = torch.FloatTensor(1)

        if f"{name}.output_projection.weight" not in state_dict:
            if self.share_input_output_embed:
                embed_out_key = f"{name}.embed_tokens.weight"
            else:
                embed_out_key = f"{name}.embed_out"
            if embed_out_key in state_dict:
                state_dict[f"{name}.output_projection.weight"] = state_dict[
                    embed_out_key
                ]
                if not self.share_input_output_embed:
                    del state_dict[embed_out_key]

        for i in range(self.num_layers):
            # update layer norms
            self.layers[i].upgrade_state_dict_named(
                state_dict, "{}.layers.{}".format(name, i)
            )



        prefix = name + "." if name != "" else ""
        image_params = ["image_position_idx"]
        for image_param in image_params:
            state_dict[prefix + image_param] = self.state_dict()[image_param]
        for param_name, param_tensor in self.state_dict().items():
            if (prefix + param_name) not in state_dict:
                state_dict[prefix + param_name] = self.state_dict()[param_name]

        if len(state_dict["decoder.embed_image_positions.weight"]) < len(self.state_dict()["embed_image_positions.weight"]):
            num_posids_to_add = len(self.state_dict()["embed_image_positions.weight"]) - len(state_dict["decoder.embed_image_positions.weight"])
            embed_dim = state_dict["decoder.embed_image_positions.weight"].size(1)
            new_pos_embed_to_add = torch.zeros(num_posids_to_add, embed_dim)
            nn.init.normal_(new_pos_embed_to_add, mean=0, std=embed_dim ** -0.5)
            new_pos_embed_to_add = new_pos_embed_to_add.to(
                dtype=state_dict["decoder.embed_image_positions.weight"].dtype,
            )
            state_dict["decoder.embed_image_positions.weight"] = torch.cat(
                [state_dict["decoder.embed_image_positions.weight"], new_pos_embed_to_add]
            )
        return state_dict


def Embedding(num_embeddings, embedding_dim, padding_idx=None, zero_init=False):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
    if padding_idx is not None:
        nn.init.constant_(m.weight[padding_idx], 0)
    if zero_init:
        nn.init.constant_(m.weight, 0)
    return m


def Linear(in_features, out_features, bias=True):
    m = nn.Linear(in_features, out_features, bias)
    nn.init.xavier_uniform_(m.weight)
    if bias:
        nn.init.constant_(m.bias, 0.0)
    return m


@register_model_architecture("unify_transformer", "unify_transformer")
def base_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.no_cross_attention = getattr(args, "no_cross_attention", False)
    args.cross_self_attention = getattr(args, "cross_self_attention", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    args.encoder_prompt = getattr(args, "encoder_prompt", False)
    args.encoder_prompt_length = getattr(args, "encoder_prompt_length", 100)
    args.encoder_prompt_type = getattr(args, "encoder_prompt_type", "prefix")
    args.encoder_prompt_projection = getattr(args, "encoder_prompt_projection", False)
    args.encoder_prompt_dim = getattr(args, "encoder_prompt_dim", 2 * args.encoder_embed_dim)

    args.decoder_prompt = getattr(args, "decoder_prompt", False)
    args.decoder_prompt_length = getattr(args, "decoder_prompt_length", 100)
    args.decoder_prompt_type = getattr(args, "decoder_prompt_type", "prefix")
    args.decoder_prompt_projection = getattr(args, "decoder_prompt_projection", False)
    args.decoder_prompt_dim = getattr(args, "decoder_prompt_dim", 2 * args.encoder_embed_dim)

    args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
    args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
    args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
    args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
    args.offload_activations = getattr(args, "offload_activations", False)
    if args.offload_activations:
        args.checkpoint_activations = True
    args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)
    args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
    args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
    args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
    args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
    args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
    args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0)