File size: 4,952 Bytes
26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Number of GPUs per GPU worker
export GPUS_PER_NODE=8
# Number of GPU workers, for single-worker training, please set to 1
export NUM_NODES=$SLURM_NNODES
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr
# The port for communication
export MASTER_PORT=12350
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=$SLURM_NODEID
echo "MASTER_ADDR: $MASTER_ADDR"
echo "RANK :$RANK"
echo "NUM_NODES :$NUM_NODES"
echo "GPUS_PER_NODE :$GPUS_PER_NODE"
export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/
echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH"
num_workers=0
ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival
base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data
base_log_dir=/work/NAT/gda2204/mshukor/logs
exp_name=unival_s1
save_dir=${base_log_dir}/ofa/checkpoints/pretrain/${exp_name}
bpe_dir=${ofa_dir}/utils/BPE
user_dir=${ofa_dir}/ofa_module
restore_file=${base_log_dir}/ofa/pretrained_models/bart.base/model.pt
image_dir=${base_data_dir}
data_dir=${base_data_dir}/ofa/pretrain_ours
mkdir -p $save_dir
neg_sample_dir=${data_dir}/negative_sample
data=${data_dir}/vision_language_caption.tsv #vision_language_mini.tsv
text_data= #${data_dir}/text_mini.tsv
image_data= #${data_dir}/image_mini.tsv
detection_data= #${data_dir}/detection_mini.tsv
image_text_data=${data_dir}/cc12m.tsv
image_text_cnt=8
image_text_vqa_data=${data_dir}/vision_language_qa.tsv
image_text_vqa_cnt=1
image_text_ground_data=${data_dir}/vision_language_ground.tsv
image_text_ground_cnt=1
selected_cols=0,1,2,3,4,5,6,7
text_selected_cols=0,1
image_selected_cols=0,1,2
detection_selected_cols=0,1,2
task=unify_task
arch=unival_base
criterion=adjust_label_smoothed_cross_entropy
label_smoothing=0.0
lr=2e-4
lr_scheduler=polynomial_decay
max_epoch=50
warmup_ratio=0.01
batch_size=2
update_freq=2
resnet_drop_path_rate=0.0
encoder_drop_path_rate=0.1
decoder_drop_path_rate=0.1
dropout=0.1
attention_dropout=0.0
max_src_length=80
max_tgt_length=30
num_bins=1000
max_image_size=512
save_interval_updates=0
image_encoder_name=timm_resnet #vit_base_patch16_224
patch_image_size=384
resnet_type=resnet101
sample_patch_num=144
resnet_model_path=${base_log_dir}/pretrained_models/resnet101_a1h-36d3f2aa.pth
python3 -m torch.distributed.launch \
--nnodes=${NUM_NODES} \
--nproc_per_node=${GPUS_PER_NODE} \
--master_port=${MASTER_PORT} \
--node_rank=${RANK} \
--master_addr=${MASTER_ADDR} \
--use_env ${ofa_dir}/train.py \
$data \
--ddp-backend=no_c10d \
--selected-cols=${selected_cols} \
--text-selected-cols=${text_selected_cols} \
--image-selected-cols=${image_selected_cols} \
--detection-selected-cols=${detection_selected_cols} \
--bpe-dir=${bpe_dir} \
--user-dir=${user_dir} \
--save-dir=${save_dir} \
--neg-sample-dir=${neg_sample_dir} \
--task=${task} \
--arch=${arch} \
--criterion=${criterion} \
--label-smoothing=${label_smoothing} \
--batch-size=${batch_size} \
--update-freq=${update_freq} \
--encoder-normalize-before \
--decoder-normalize-before \
--share-decoder-input-output-embed \
--share-all-embeddings \
--layernorm-embedding \
--patch-layernorm-embedding \
--code-layernorm-embedding \
--resnet-drop-path-rate=${resnet_drop_path_rate} \
--encoder-drop-path-rate=${encoder_drop_path_rate} \
--decoder-drop-path-rate=${decoder_drop_path_rate} \
--dropout=${dropout} \
--attention-dropout=${attention_dropout} \
--weight-decay=0.01 --optimizer=adam --adam-betas="(0.9,0.999)" --adam-eps=1e-08 --clip-norm=5.0 \
--lr-scheduler=${lr_scheduler} --lr=${lr} \
--max-epoch=${max_epoch} --warmup-ratio=${warmup_ratio} \
--log-format=simple --log-interval=10 \
--fixed-validation-seed=7 \
--keep-last-epochs=15 \
--save-interval=1 \
--save-interval-updates=${save_interval_updates} \
--disable-validation \
--max-src-length=${max_src_length} \
--max-tgt-length=${max_tgt_length} \
--add-type-embedding \
--scale-attn \
--scale-fc \
--scale-heads \
--disable-entangle \
--num-bins=${num_bins} \
--patch-image-size=${patch_image_size} \
--sample-patch-num=${sample_patch_num} \
--max-image-size=${max_image_size} \
--fp16 \
--fp16-scale-window=128 \
--num-workers=${num_workers} \
--read-from-img-path \
--image-dir=${image_dir} \
--restore-file=${restore_file} \
--image-encoder-name=${image_encoder_name} \
--resnet-type=${resnet_type} \
--resnet-model-path=${resnet_model_path} \
--image-text-data=${image_text_data} \
--image-text-cnt=${image_text_cnt} \
--image-text-vqa-data=${image_text_vqa_data} \
--image-text-vqa-cnt=${image_text_vqa_cnt} \
--image-text-ground-data=${image_text_ground_data} \
--image-text-ground-cnt=${image_text_ground_cnt}
|