File size: 4,952 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

# Number of GPUs per GPU worker
export GPUS_PER_NODE=8
# Number of GPU workers, for single-worker training, please set to 1
export NUM_NODES=$SLURM_NNODES
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr

# The port for communication
export MASTER_PORT=12350
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=$SLURM_NODEID

echo "MASTER_ADDR: $MASTER_ADDR"
echo "RANK :$RANK"
echo "NUM_NODES :$NUM_NODES"
echo "GPUS_PER_NODE :$GPUS_PER_NODE"

export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/

echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH"

num_workers=0


ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival
base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data
base_log_dir=/work/NAT/gda2204/mshukor/logs

exp_name=unival_s1

save_dir=${base_log_dir}/ofa/checkpoints/pretrain/${exp_name}

bpe_dir=${ofa_dir}/utils/BPE
user_dir=${ofa_dir}/ofa_module


restore_file=${base_log_dir}/ofa/pretrained_models/bart.base/model.pt




image_dir=${base_data_dir}
data_dir=${base_data_dir}/ofa/pretrain_ours

mkdir -p $save_dir


neg_sample_dir=${data_dir}/negative_sample
data=${data_dir}/vision_language_caption.tsv #vision_language_mini.tsv
text_data= #${data_dir}/text_mini.tsv
image_data= #${data_dir}/image_mini.tsv
detection_data= #${data_dir}/detection_mini.tsv

image_text_data=${data_dir}/cc12m.tsv
image_text_cnt=8

image_text_vqa_data=${data_dir}/vision_language_qa.tsv
image_text_vqa_cnt=1

image_text_ground_data=${data_dir}/vision_language_ground.tsv
image_text_ground_cnt=1


selected_cols=0,1,2,3,4,5,6,7
text_selected_cols=0,1
image_selected_cols=0,1,2
detection_selected_cols=0,1,2


task=unify_task
arch=unival_base
criterion=adjust_label_smoothed_cross_entropy
label_smoothing=0.0
lr=2e-4
lr_scheduler=polynomial_decay
max_epoch=50
warmup_ratio=0.01
batch_size=2
update_freq=2
resnet_drop_path_rate=0.0
encoder_drop_path_rate=0.1
decoder_drop_path_rate=0.1
dropout=0.1
attention_dropout=0.0
max_src_length=80
max_tgt_length=30
num_bins=1000

max_image_size=512



save_interval_updates=0

image_encoder_name=timm_resnet #vit_base_patch16_224
patch_image_size=384
resnet_type=resnet101
sample_patch_num=144

resnet_model_path=${base_log_dir}/pretrained_models/resnet101_a1h-36d3f2aa.pth


python3 -m torch.distributed.launch \
--nnodes=${NUM_NODES} \
--nproc_per_node=${GPUS_PER_NODE} \
--master_port=${MASTER_PORT} \
--node_rank=${RANK} \
--master_addr=${MASTER_ADDR} \
--use_env ${ofa_dir}/train.py \
  $data \
  --ddp-backend=no_c10d \
  --selected-cols=${selected_cols} \
  --text-selected-cols=${text_selected_cols} \
  --image-selected-cols=${image_selected_cols} \
  --detection-selected-cols=${detection_selected_cols} \
  --bpe-dir=${bpe_dir} \
  --user-dir=${user_dir} \
  --save-dir=${save_dir} \
  --neg-sample-dir=${neg_sample_dir} \
  --task=${task} \
  --arch=${arch} \
  --criterion=${criterion} \
  --label-smoothing=${label_smoothing} \
  --batch-size=${batch_size} \
  --update-freq=${update_freq} \
  --encoder-normalize-before \
  --decoder-normalize-before \
  --share-decoder-input-output-embed \
  --share-all-embeddings \
  --layernorm-embedding \
  --patch-layernorm-embedding \
  --code-layernorm-embedding \
  --resnet-drop-path-rate=${resnet_drop_path_rate} \
  --encoder-drop-path-rate=${encoder_drop_path_rate} \
  --decoder-drop-path-rate=${decoder_drop_path_rate} \
  --dropout=${dropout} \
  --attention-dropout=${attention_dropout} \
  --weight-decay=0.01 --optimizer=adam --adam-betas="(0.9,0.999)" --adam-eps=1e-08 --clip-norm=5.0 \
  --lr-scheduler=${lr_scheduler} --lr=${lr} \
  --max-epoch=${max_epoch} --warmup-ratio=${warmup_ratio} \
  --log-format=simple --log-interval=10 \
  --fixed-validation-seed=7 \
  --keep-last-epochs=15 \
  --save-interval=1 \
  --save-interval-updates=${save_interval_updates} \
  --disable-validation \
  --max-src-length=${max_src_length} \
  --max-tgt-length=${max_tgt_length} \
  --add-type-embedding \
  --scale-attn \
  --scale-fc \
  --scale-heads \
  --disable-entangle \
  --num-bins=${num_bins} \
  --patch-image-size=${patch_image_size} \
  --sample-patch-num=${sample_patch_num} \
  --max-image-size=${max_image_size} \
  --fp16 \
  --fp16-scale-window=128 \
  --num-workers=${num_workers} \
  --read-from-img-path \
  --image-dir=${image_dir} \
  --restore-file=${restore_file} \
  --image-encoder-name=${image_encoder_name} \
  --resnet-type=${resnet_type} \
  --resnet-model-path=${resnet_model_path} \
  --image-text-data=${image_text_data} \
  --image-text-cnt=${image_text_cnt} \
  --image-text-vqa-data=${image_text_vqa_data} \
  --image-text-vqa-cnt=${image_text_vqa_cnt} \
  --image-text-ground-data=${image_text_ground_data} \
  --image-text-ground-cnt=${image_text_ground_cnt}