File size: 1,710 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Sergey Karayev
# Modified bt Roman Solovyev to support normalized boxes
# --------------------------------------------------------

cimport cython
import numpy as np
cimport numpy as np


def compute_overlap(
    np.ndarray[double, ndim=2] boxes,
    np.ndarray[double, ndim=2] query_boxes
):
    """
    Args
        a: (N, 4) ndarray of float
        b: (K, 4) ndarray of float

    Returns
        overlaps: (N, K) ndarray of overlap between boxes and query_boxes
    """
    cdef unsigned int N = boxes.shape[0]
    cdef unsigned int K = query_boxes.shape[0]
    cdef np.ndarray[double, ndim=2] overlaps = np.zeros((N, K), dtype=np.float64)
    cdef double iw, ih, box_area
    cdef double ua
    cdef unsigned int k, n
    for k in range(K):
        box_area = (
            (query_boxes[k, 2] - query_boxes[k, 0]) *
            (query_boxes[k, 3] - query_boxes[k, 1])
        )
        for n in range(N):
            iw = (
                min(boxes[n, 2], query_boxes[k, 2]) -
                max(boxes[n, 0], query_boxes[k, 0])
            )
            if iw > 0:
                ih = (
                    min(boxes[n, 3], query_boxes[k, 3]) -
                    max(boxes[n, 1], query_boxes[k, 1])
                )
                if ih > 0:
                    ua = np.float64(
                        (boxes[n, 2] - boxes[n, 0]) *
                        (boxes[n, 3] - boxes[n, 1]) +
                        box_area - iw * ih
                    )
                    overlaps[n, k] = iw * ih / ua
    return overlaps