UnIVAL / fairseq /tests /test_binaries.py
mshukor
init
26fd00c
raw
history blame
72.1 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
import json
import os
import random
import sys
import tempfile
import unittest
from io import StringIO
from typing import List, Dict
import torch
from fairseq import options
from fairseq_cli import eval_lm, train
from tests.utils import (
create_dummy_data,
generate_main,
preprocess_lm_data,
preprocess_summarization_data,
preprocess_translation_data,
create_laser_data_and_config_json,
train_translation_model,
train_language_model,
)
try:
import transformers # noqa
has_hf_transformers = True
except ImportError:
has_hf_transformers = False
class TestTranslation(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_fconv(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fconv") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(data_dir, "fconv_iwslt_de_en")
generate_main(data_dir)
def test_raw(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fconv_raw") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--dataset-impl", "raw"])
train_translation_model(
data_dir, "fconv_iwslt_de_en", ["--dataset-impl", "raw"]
)
generate_main(data_dir, ["--dataset-impl", "raw"])
def test_update_freq(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_update_freq") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir, "fconv_iwslt_de_en", ["--update-freq", "3"]
)
generate_main(data_dir)
def test_max_positions(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_max_positions") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
with self.assertRaises(Exception) as context:
train_translation_model(
data_dir,
"fconv_iwslt_de_en",
["--max-target-positions", "5"],
)
self.assertTrue(
"skip this example with --skip-invalid-size-inputs-valid-test"
in str(context.exception)
)
train_translation_model(
data_dir,
"fconv_iwslt_de_en",
[
"--max-target-positions",
"5",
"--skip-invalid-size-inputs-valid-test",
],
)
with self.assertRaises(Exception) as context:
generate_main(data_dir)
generate_main(data_dir, ["--skip-invalid-size-inputs-valid-test"])
def test_generation(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_sampling") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(data_dir, "fconv_iwslt_de_en")
generate_main(
data_dir,
[
"--sampling",
"--temperature",
"2",
"--beam",
"2",
"--nbest",
"2",
],
)
generate_main(
data_dir,
[
"--sampling",
"--sampling-topk",
"3",
"--beam",
"2",
"--nbest",
"2",
],
)
generate_main(
data_dir,
[
"--sampling",
"--sampling-topp",
"0.2",
"--beam",
"2",
"--nbest",
"2",
],
)
generate_main(
data_dir,
[
"--diversity-rate",
"0.5",
"--beam",
"6",
],
)
with self.assertRaises(ValueError):
generate_main(
data_dir,
[
"--diverse-beam-groups",
"4",
"--match-source-len",
],
)
generate_main(data_dir, ["--prefix-size", "2"])
generate_main(data_dir, ["--retain-dropout"])
def test_eval_bleu(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_eval_bleu") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"fconv_iwslt_de_en",
[
"--eval-bleu",
"--eval-bleu-print-samples",
"--eval-bleu-remove-bpe",
"--eval-bleu-detok",
"space",
"--eval-bleu-args",
'{"beam": 4, "min_len": 10}',
],
)
def test_lstm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lstm") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"lstm_wiseman_iwslt_de_en",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--decoder-out-embed-dim",
"8",
],
)
generate_main(data_dir)
def test_lstm_bidirectional(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lstm_bidirectional") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"lstm",
[
"--encoder-layers",
"2",
"--encoder-bidirectional",
"--encoder-hidden-size",
"16",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--decoder-out-embed-dim",
"8",
"--decoder-layers",
"2",
],
)
generate_main(data_dir)
def test_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
],
run_validation=True,
)
generate_main(data_dir)
def test_multilingual_transformer(self):
# test with all combinations of encoder/decoder lang tokens
encoder_langtok_flags = [
[],
["--encoder-langtok", "src"],
["--encoder-langtok", "tgt"],
]
decoder_langtok_flags = [[], ["--decoder-langtok"]]
with contextlib.redirect_stdout(StringIO()):
for i in range(len(encoder_langtok_flags)):
for j in range(len(decoder_langtok_flags)):
enc_ltok_flag = encoder_langtok_flags[i]
dec_ltok_flag = decoder_langtok_flags[j]
with tempfile.TemporaryDirectory(
f"test_multilingual_transformer_{i}_{j}"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
arch="multilingual_transformer",
task="multilingual_translation",
extra_flags=[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
]
+ enc_ltok_flag
+ dec_ltok_flag,
lang_flags=["--lang-pairs", "in-out,out-in"],
run_validation=True,
extra_valid_flags=enc_ltok_flag + dec_ltok_flag,
)
generate_main(
data_dir,
extra_flags=[
"--task",
"multilingual_translation",
"--lang-pairs",
"in-out,out-in",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ltok_flag
+ dec_ltok_flag,
)
@unittest.skipIf(
sys.platform.lower() == "darwin", "skip latent depth test on MacOS"
)
def test_multilingual_translation_latent_depth(self):
# test with latent depth in encoder, decoder, or both
encoder_latent_layer = [[], ["--encoder-latent-layer"]]
decoder_latent_layer = [[], ["--decoder-latent-layer"]]
with contextlib.redirect_stdout(StringIO()):
for i in range(len(encoder_latent_layer)):
for j in range(len(decoder_latent_layer)):
if i == 0 and j == 0:
continue
enc_ll_flag = encoder_latent_layer[i]
dec_ll_flag = decoder_latent_layer[j]
with tempfile.TemporaryDirectory(
f"test_multilingual_translation_latent_depth_{i}_{j}"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(
data_dir, extra_flags=["--joined-dictionary"]
)
train_translation_model(
data_dir,
arch="latent_multilingual_transformer",
task="multilingual_translation_latent_depth",
extra_flags=[
"--user-dir",
"examples/latent_depth/latent_depth_src",
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--share-encoders",
"--share-decoders",
"--sparsity-weight",
"0.1",
]
+ enc_ll_flag
+ dec_ll_flag,
lang_flags=["--lang-pairs", "in-out,out-in"],
run_validation=True,
extra_valid_flags=[
"--user-dir",
"examples/latent_depth/latent_depth_src",
]
+ enc_ll_flag
+ dec_ll_flag,
)
generate_main(
data_dir,
extra_flags=[
"--user-dir",
"examples/latent_depth/latent_depth_src",
"--task",
"multilingual_translation_latent_depth",
"--lang-pairs",
"in-out,out-in",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ll_flag
+ dec_ll_flag,
)
def test_translation_multi_simple_epoch(self):
# test with all combinations of encoder/decoder lang tokens
encoder_langtok_flags = [
[],
["--encoder-langtok", "src"],
["--encoder-langtok", "tgt"],
]
decoder_langtok_flags = [[], ["--decoder-langtok"]]
with contextlib.redirect_stdout(StringIO()):
for i in range(len(encoder_langtok_flags)):
for j in range(len(decoder_langtok_flags)):
enc_ltok_flag = encoder_langtok_flags[i]
dec_ltok_flag = decoder_langtok_flags[j]
with tempfile.TemporaryDirectory(
f"test_translation_multi_simple_epoch_{i}_{j}"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(
data_dir, extra_flags=["--joined-dictionary"]
)
train_translation_model(
data_dir,
arch="transformer",
task="translation_multi_simple_epoch",
extra_flags=[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--sampling-method",
"temperature",
"--sampling-temperature",
"1.5",
"--virtual-epoch-size",
"1000",
]
+ enc_ltok_flag
+ dec_ltok_flag,
lang_flags=["--lang-pairs", "in-out,out-in"],
run_validation=True,
extra_valid_flags=enc_ltok_flag + dec_ltok_flag,
)
generate_main(
data_dir,
extra_flags=[
"--task",
"translation_multi_simple_epoch",
"--lang-pairs",
"in-out,out-in",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ltok_flag
+ dec_ltok_flag,
)
def test_translation_multi_simple_epoch_no_vepoch(self):
# test with all combinations of encoder/decoder lang tokens
with contextlib.redirect_stdout(StringIO()):
enc_ltok_flag = ["--encoder-langtok", "src"]
dec_ltok_flag = ["--decoder-langtok"]
with tempfile.TemporaryDirectory(
"test_translation_multi_simple_epoch_dict"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, extra_flags=[])
train_translation_model(
data_dir,
arch="transformer",
task="translation_multi_simple_epoch",
extra_flags=[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--sampling-method",
"temperature",
"--sampling-temperature",
"1.5",
]
+ enc_ltok_flag
+ dec_ltok_flag,
lang_flags=["--lang-pairs", "in-out"],
run_validation=True,
extra_valid_flags=enc_ltok_flag + dec_ltok_flag,
)
generate_main(
data_dir,
extra_flags=[
"--task",
"translation_multi_simple_epoch",
"--lang-pairs",
"in-out",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ltok_flag
+ dec_ltok_flag,
)
def test_translation_multi_simple_epoch_dicts(self):
# test with all combinations of encoder/decoder lang tokens
with contextlib.redirect_stdout(StringIO()):
enc_ltok_flag = ["--encoder-langtok", "src"]
dec_ltok_flag = ["--decoder-langtok"]
with tempfile.TemporaryDirectory(
"test_translation_multi_simple_epoch_dict"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, extra_flags=[])
train_translation_model(
data_dir,
arch="transformer",
task="translation_multi_simple_epoch",
extra_flags=[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--sampling-method",
"temperature",
"--sampling-temperature",
"1.5",
"--virtual-epoch-size",
"1000",
]
+ enc_ltok_flag
+ dec_ltok_flag,
lang_flags=["--lang-pairs", "in-out"],
run_validation=True,
extra_valid_flags=enc_ltok_flag + dec_ltok_flag,
)
generate_main(
data_dir,
extra_flags=[
"--task",
"translation_multi_simple_epoch",
"--lang-pairs",
"in-out",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ltok_flag
+ dec_ltok_flag,
)
def test_translation_multi_simple_epoch_src_tgt_dict_spec(self):
# test the specification of explicit --src-dict and --tgt-dict
with contextlib.redirect_stdout(StringIO()):
enc_ltok_flag = ["--encoder-langtok", "src"]
dec_ltok_flag = ["--decoder-langtok"]
with tempfile.TemporaryDirectory(
"test_translation_multi_simple_epoch_dict"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, extra_flags=[])
train_translation_model(
data_dir,
arch="transformer",
task="translation_multi_simple_epoch",
extra_flags=[
"--source-dict",
f"{data_dir}/dict.in.txt",
"--target-dict",
f"{data_dir}/dict.out.txt",
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--sampling-method",
"temperature",
"--sampling-temperature",
"1.5",
"--virtual-epoch-size",
"1000",
]
+ enc_ltok_flag
+ dec_ltok_flag,
lang_flags=["--lang-pairs", "in-out"],
run_validation=True,
extra_valid_flags=enc_ltok_flag + dec_ltok_flag,
)
generate_main(
data_dir,
extra_flags=[
"--task",
"translation_multi_simple_epoch",
"--lang-pairs",
"in-out",
"--source-lang",
"in",
"--target-lang",
"out",
]
+ enc_ltok_flag
+ dec_ltok_flag,
)
def test_transformer_cross_self_attention(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_transformer_cross_self_attention"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--no-cross-attention",
"--cross-self-attention",
],
run_validation=True,
)
generate_main(data_dir, extra_flags=[])
def test_transformer_pointer_generator(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_transformer_pointer_generator"
) as data_dir:
create_dummy_data(data_dir)
preprocess_summarization_data(data_dir)
train_translation_model(
data_dir,
"transformer_pointer_generator",
extra_flags=[
"--user-dir",
"examples/pointer_generator/pointer_generator_src",
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--alignment-layer",
"-1",
"--alignment-heads",
"1",
"--source-position-markers",
"0",
],
run_validation=True,
extra_valid_flags=[
"--user-dir",
"examples/pointer_generator/pointer_generator_src",
],
)
generate_main(
data_dir,
extra_flags=[
"--user-dir",
"examples/pointer_generator/pointer_generator_src",
],
)
def test_lightconv(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lightconv") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"lightconv_iwslt_de_en",
[
"--encoder-conv-type",
"lightweight",
"--decoder-conv-type",
"lightweight",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
],
)
generate_main(data_dir)
def test_dynamicconv(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_dynamicconv") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"lightconv_iwslt_de_en",
[
"--encoder-conv-type",
"dynamic",
"--decoder-conv-type",
"dynamic",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
],
)
generate_main(data_dir)
def test_cmlm_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_cmlm_transformer") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--joined-dictionary"])
train_translation_model(
data_dir,
"cmlm_transformer",
[
"--apply-bert-init",
"--criterion",
"nat_loss",
"--noise",
"full_mask",
"--pred-length-offset",
"--length-loss-factor",
"0.1",
],
task="translation_lev",
)
generate_main(
data_dir,
[
"--task",
"translation_lev",
"--iter-decode-max-iter",
"9",
"--iter-decode-eos-penalty",
"0",
"--print-step",
],
)
def test_nonautoregressive_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_nonautoregressive_transformer"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--joined-dictionary"])
train_translation_model(
data_dir,
"nonautoregressive_transformer",
[
"--apply-bert-init",
"--src-embedding-copy",
"--criterion",
"nat_loss",
"--noise",
"full_mask",
"--pred-length-offset",
"--length-loss-factor",
"0.1",
],
task="translation_lev",
)
generate_main(
data_dir,
[
"--task",
"translation_lev",
"--iter-decode-max-iter",
"0",
"--iter-decode-eos-penalty",
"0",
"--print-step",
],
)
# def test_nat_crf_transformer(self):
# with contextlib.redirect_stdout(StringIO()):
# with tempfile.TemporaryDirectory('test_nat_crf_transformer') as data_dir:
# create_dummy_data(data_dir)
# preprocess_translation_data(data_dir, ['--joined-dictionary'])
# train_translation_model(data_dir, 'nacrf_transformer', [
# '--apply-bert-init', '--criterion',
# 'nat_loss', '--noise', 'full_mask', '--pred-length-offset',
# '--length-loss-factor', '0.1',
# '--word-ins-loss-factor', '0.5',
# '--crf-lowrank-approx', '1',
# '--crf-beam-approx', '1'
# ], task='translation_lev')
# generate_main(data_dir, [
# '--task', 'translation_lev',
# '--iter-decode-max-iter', '0',
# '--iter-decode-eos-penalty', '0',
# '--print-step',
# ])
def test_iterative_nonautoregressive_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_iterative_nonautoregressive_transformer"
) as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--joined-dictionary"])
train_translation_model(
data_dir,
"iterative_nonautoregressive_transformer",
[
"--apply-bert-init",
"--src-embedding-copy",
"--criterion",
"nat_loss",
"--noise",
"full_mask",
"--stochastic-approx",
"--dae-ratio",
"0.5",
"--train-step",
"3",
],
task="translation_lev",
)
generate_main(
data_dir,
[
"--task",
"translation_lev",
"--iter-decode-max-iter",
"9",
"--iter-decode-eos-penalty",
"0",
"--print-step",
],
)
def test_insertion_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_insertion_transformer") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir, ["--joined-dictionary"])
train_translation_model(
data_dir,
"insertion_transformer",
[
"--apply-bert-init",
"--criterion",
"nat_loss",
"--noise",
"random_mask",
],
task="translation_lev",
)
generate_main(
data_dir,
[
"--task",
"translation_lev",
"--iter-decode-max-iter",
"9",
"--iter-decode-eos-penalty",
"0",
"--print-step",
],
)
def test_mixture_of_experts(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_moe") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--task",
"translation_moe",
"--user-dir",
"examples/translation_moe/translation_moe_src",
"--method",
"hMoElp",
"--mean-pool-gating-network",
"--num-experts",
"3",
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
],
)
generate_main(
data_dir,
[
"--task",
"translation_moe",
"--user-dir",
"examples/translation_moe/translation_moe_src",
"--method",
"hMoElp",
"--mean-pool-gating-network",
"--num-experts",
"3",
"--gen-expert",
"0",
],
)
def test_alignment(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_alignment") as data_dir:
create_dummy_data(data_dir, alignment=True)
preprocess_translation_data(data_dir, ["--align-suffix", "align"])
train_translation_model(
data_dir,
"transformer_align",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--load-alignments",
"--alignment-layer",
"1",
"--criterion",
"label_smoothed_cross_entropy_with_alignment",
],
run_validation=True,
)
generate_main(data_dir)
def test_laser_lstm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_laser_lstm") as data_dir:
laser_config_file = create_laser_data_and_config_json(data_dir)
train_translation_model(
laser_config_file.name,
"laser_lstm",
[
"--user-dir",
"examples/laser/laser_src",
"--weighting-alpha",
"0.3",
"--encoder-bidirectional",
"--encoder-hidden-size",
"512",
"--encoder-layers",
"5",
"--decoder-layers",
"1",
"--encoder-embed-dim",
"320",
"--decoder-embed-dim",
"320",
"--decoder-lang-embed-dim",
"32",
"--save-dir",
data_dir,
"--disable-validation",
],
task="laser",
lang_flags=[],
)
def test_laser_transformer(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_laser_transformer") as data_dir:
laser_config_file = create_laser_data_and_config_json(data_dir)
train_translation_model(
laser_config_file.name,
"laser_transformer",
[
"--user-dir",
"examples/laser/laser_src",
"--weighting-alpha",
"0.3",
"--encoder-embed-dim",
"320",
"--decoder-embed-dim",
"320",
"--decoder-lang-embed-dim",
"32",
"--save-dir",
data_dir,
"--disable-validation",
],
task="laser",
lang_flags=[],
)
def test_alignment_full_context(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_alignment") as data_dir:
create_dummy_data(data_dir, alignment=True)
preprocess_translation_data(data_dir, ["--align-suffix", "align"])
train_translation_model(
data_dir,
"transformer_align",
[
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--load-alignments",
"--alignment-layer",
"1",
"--criterion",
"label_smoothed_cross_entropy_with_alignment",
"--full-context-alignment",
],
run_validation=True,
)
generate_main(data_dir)
def test_transformer_layerdrop(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer_layerdrop") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
[
"--encoder-layers",
"3",
"--decoder-layers",
"3",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--encoder-layerdrop",
"0.01",
"--decoder-layerdrop",
"0.01",
],
)
generate_main(data_dir)
generate_main(
data_dir,
[
"--model-overrides",
"{'encoder_layers_to_keep':'0,2','decoder_layers_to_keep':'1'}",
],
)
class TestStories(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_fconv_self_att_wp(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fconv_self_att_wp") as data_dir:
create_dummy_data(data_dir)
preprocess_translation_data(data_dir)
config = [
"--encoder-layers",
"[(128, 3)] * 2",
"--decoder-layers",
"[(128, 3)] * 2",
"--decoder-attention",
"True",
"--encoder-attention",
"False",
"--gated-attention",
"True",
"--self-attention",
"True",
"--project-input",
"True",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--decoder-out-embed-dim",
"8",
"--multihead-self-attention-nheads",
"2",
]
train_translation_model(data_dir, "fconv_self_att_wp", config)
generate_main(data_dir)
# fusion model
os.rename(
os.path.join(data_dir, "checkpoint_last.pt"),
os.path.join(data_dir, "pretrained.pt"),
)
config.extend(
[
"--pretrained",
"True",
"--pretrained-checkpoint",
os.path.join(data_dir, "pretrained.pt"),
"--save-dir",
os.path.join(data_dir, "fusion_model"),
]
)
train_translation_model(data_dir, "fconv_self_att_wp", config)
class TestLanguageModeling(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_fconv_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_fconv_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"fconv_lm",
[
"--decoder-layers",
"[(850, 3)] * 2 + [(1024,4)]",
"--decoder-embed-dim",
"280",
"--optimizer",
"nag",
"--lr",
"0.1",
],
)
eval_lm_main(data_dir)
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_transformer_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"transformer_lm",
["--add-bos-token", '--nval', '1'],
run_validation=True,
)
eval_lm_main(data_dir)
eval_lm_main(data_dir, extra_flags=["--context-window", "25"])
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_transformer_lm_with_adaptive_softmax(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_transformer_lm_with_adaptive_softmax"
) as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"transformer_lm",
[
"--add-bos-token",
"--criterion",
"adaptive_loss",
"--adaptive-softmax-cutoff",
"5,10,15",
],
run_validation=True,
)
eval_lm_main(data_dir)
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_lightconv_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lightconv_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"lightconv_lm",
["--add-bos-token"],
run_validation=True,
)
eval_lm_main(data_dir)
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_lstm_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lstm_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"lstm_lm",
["--add-bos-token"],
run_validation=True,
)
eval_lm_main(data_dir)
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
def test_lstm_lm_residuals(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_lstm_lm_residuals") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_language_model(
data_dir,
"lstm_lm",
["--add-bos-token", "--residuals"],
run_validation=True,
)
eval_lm_main(data_dir)
generate_main(
data_dir,
[
"--task",
"language_modeling",
"--sample-break-mode",
"eos",
"--tokens-per-sample",
"500",
],
)
@unittest.skipIf(not has_hf_transformers, "skip test if transformers is missing")
def test_transformer_xl_bptt_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_transformer_xl_bptt_lm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
task_flags = [
"--user-dir",
"examples/truncated_bptt",
"--task",
"truncated_bptt_lm",
"--batch-size",
"2",
"--tokens-per-sample",
"50",
]
train_language_model(
data_dir=data_dir,
arch="transformer_xl",
extra_flags=task_flags
+ [
"--n-layer",
"2",
],
task="truncated_bptt_lm",
run_validation=True,
extra_valid_flags=task_flags,
)
eval_lm_main(data_dir, extra_flags=task_flags)
# Train with activation offloading
train_language_model(
data_dir=data_dir,
arch="transformer_xl",
extra_flags=task_flags
+ [
"--n-layer",
"2",
"--offload-activations",
],
task="truncated_bptt_lm",
run_validation=True,
extra_valid_flags=task_flags,
)
class TestMaskedLanguageModel(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_legacy_masked_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_legacy_mlm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_legacy_masked_language_model(data_dir, "masked_lm")
def test_roberta_masked_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_roberta_mlm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_masked_lm(
data_dir, "roberta_base", extra_flags=["--encoder-layers", "2"]
)
def test_roberta_sentence_prediction(self):
num_classes = 3
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_roberta_head") as data_dir:
create_dummy_roberta_head_data(data_dir, num_classes=num_classes)
preprocess_lm_data(os.path.join(data_dir, "input0"))
preprocess_lm_data(os.path.join(data_dir, "label"))
train_roberta_head(data_dir, "roberta_base", num_classes=num_classes)
def test_roberta_regression_single(self):
num_classes = 1
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_roberta_regression_single"
) as data_dir:
create_dummy_roberta_head_data(
data_dir, num_classes=num_classes, regression=True
)
preprocess_lm_data(os.path.join(data_dir, "input0"))
train_roberta_head(
data_dir,
"roberta_base",
num_classes=num_classes,
extra_flags=["--regression-target"],
)
def test_roberta_regression_multiple(self):
num_classes = 3
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_roberta_regression_multiple"
) as data_dir:
create_dummy_roberta_head_data(
data_dir, num_classes=num_classes, regression=True
)
preprocess_lm_data(os.path.join(data_dir, "input0"))
train_roberta_head(
data_dir,
"roberta_base",
num_classes=num_classes,
extra_flags=["--regression-target"],
)
def test_linformer_roberta_masked_lm(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_linformer_roberta_mlm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_masked_lm(
data_dir,
"linformer_roberta_base",
extra_flags=[
"--user-dir",
"examples/linformer/linformer_src",
"--encoder-layers",
"2",
],
)
def test_linformer_roberta_sentence_prediction(self):
num_classes = 3
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_linformer_roberta_head") as data_dir:
create_dummy_roberta_head_data(data_dir, num_classes=num_classes)
preprocess_lm_data(os.path.join(data_dir, "input0"))
preprocess_lm_data(os.path.join(data_dir, "label"))
train_roberta_head(
data_dir,
"linformer_roberta_base",
num_classes=num_classes,
extra_flags=["--user-dir", "examples/linformer/linformer_src"],
)
def test_linformer_roberta_regression_single(self):
num_classes = 1
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_linformer_roberta_regression_single"
) as data_dir:
create_dummy_roberta_head_data(
data_dir, num_classes=num_classes, regression=True
)
preprocess_lm_data(os.path.join(data_dir, "input0"))
train_roberta_head(
data_dir,
"linformer_roberta_base",
num_classes=num_classes,
extra_flags=[
"--regression-target",
"--user-dir",
"examples/linformer/linformer_src",
],
)
def test_linformer_roberta_regression_multiple(self):
num_classes = 3
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory(
"test_linformer_roberta_regression_multiple"
) as data_dir:
create_dummy_roberta_head_data(
data_dir, num_classes=num_classes, regression=True
)
preprocess_lm_data(os.path.join(data_dir, "input0"))
train_roberta_head(
data_dir,
"linformer_roberta_base",
num_classes=num_classes,
extra_flags=[
"--regression-target",
"--user-dir",
"examples/linformer/linformer_src",
],
)
def _test_pretrained_masked_lm_for_translation(self, learned_pos_emb, encoder_only):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_mlm") as data_dir:
create_dummy_data(data_dir)
preprocess_lm_data(data_dir)
train_legacy_masked_language_model(
data_dir,
arch="masked_lm",
extra_args=("--encoder-learned-pos",) if learned_pos_emb else (),
)
with tempfile.TemporaryDirectory(
"test_mlm_translation"
) as translation_dir:
create_dummy_data(translation_dir)
preprocess_translation_data(
translation_dir, extra_flags=["--joined-dictionary"]
)
# Train transformer with data_dir/checkpoint_last.pt
train_translation_model(
translation_dir,
arch="transformer_from_pretrained_xlm",
extra_flags=[
"--decoder-layers",
"1",
"--decoder-embed-dim",
"32",
"--decoder-attention-heads",
"1",
"--decoder-ffn-embed-dim",
"32",
"--encoder-layers",
"1",
"--encoder-embed-dim",
"32",
"--encoder-attention-heads",
"1",
"--encoder-ffn-embed-dim",
"32",
"--pretrained-xlm-checkpoint",
"{}/checkpoint_last.pt".format(data_dir),
"--activation-fn",
"gelu",
"--max-source-positions",
"500",
"--max-target-positions",
"500",
]
+ (
["--encoder-learned-pos", "--decoder-learned-pos"]
if learned_pos_emb
else []
)
+ (["--init-encoder-only"] if encoder_only else []),
task="translation_from_pretrained_xlm",
)
def test_pretrained_masked_lm_for_translation_learned_pos_emb(self):
self._test_pretrained_masked_lm_for_translation(True, False)
def test_pretrained_masked_lm_for_translation_sinusoidal_pos_emb(self):
self._test_pretrained_masked_lm_for_translation(False, False)
def test_pretrained_masked_lm_for_translation_encoder_only(self):
self._test_pretrained_masked_lm_for_translation(True, True)
def test_r4f_roberta(self):
num_classes = 3
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_r4f_roberta_head") as data_dir:
create_dummy_roberta_head_data(data_dir, num_classes=num_classes)
preprocess_lm_data(os.path.join(data_dir, "input0"))
preprocess_lm_data(os.path.join(data_dir, "label"))
train_roberta_head(
data_dir,
"roberta_base",
num_classes=num_classes,
extra_flags=[
"--user-dir",
"examples/rxf/rxf_src",
"--criterion",
"sentence_prediction_r3f",
"--spectral-norm-classification-head",
],
)
def train_legacy_masked_language_model(data_dir, arch, extra_args=()):
train_parser = options.get_training_parser()
# TODO: langs should be in and out right?
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
"cross_lingual_lm",
data_dir,
"--arch",
arch,
# Optimizer args
"--optimizer",
"adam",
"--lr-scheduler",
"reduce_lr_on_plateau",
"--lr-shrink",
"0.5",
"--lr",
"0.0001",
"--stop-min-lr",
"1e-09",
# dropout, attention args
"--dropout",
"0.1",
"--attention-dropout",
"0.1",
# MLM args
"--criterion",
"legacy_masked_lm_loss",
"--masked-lm-only",
"--monolingual-langs",
"in,out",
"--num-segment",
"5",
# Transformer args: use a small transformer model for fast training
"--encoder-layers",
"1",
"--encoder-embed-dim",
"32",
"--encoder-attention-heads",
"1",
"--encoder-ffn-embed-dim",
"32",
# Other training args
"--max-tokens",
"500",
"--tokens-per-sample",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
"1",
"--dataset-impl",
"raw",
"--num-workers",
"0",
]
+ list(extra_args),
)
train.main(train_args)
class TestOptimizers(unittest.TestCase):
def setUp(self):
logging.disable(logging.CRITICAL)
def tearDown(self):
logging.disable(logging.NOTSET)
def test_optimizers(self):
with contextlib.redirect_stdout(StringIO()):
with tempfile.TemporaryDirectory("test_optimizers") as data_dir:
# Use just a bit of data and tiny model to keep this test runtime reasonable
create_dummy_data(data_dir, num_examples=10, maxlen=5)
preprocess_translation_data(data_dir)
optimizers = ["adafactor", "adam", "nag", "adagrad", "sgd", "adadelta"]
last_checkpoint = os.path.join(data_dir, "checkpoint_last.pt")
for optimizer in optimizers:
if os.path.exists(last_checkpoint):
os.remove(last_checkpoint)
train_translation_model(
data_dir,
"lstm",
[
"--required-batch-size-multiple",
"1",
"--encoder-layers",
"1",
"--encoder-hidden-size",
"32",
"--decoder-layers",
"1",
"--optimizer",
optimizer,
],
)
generate_main(data_dir)
def read_last_log_entry(
logs: List[logging.LogRecord], logger_name: str
) -> Dict[str, float]:
for x in reversed(logs):
if x.name == logger_name:
return json.loads(x.message)
raise ValueError(f"No entries from {logger_name} found in captured logs")
class TestActivationCheckpointing(unittest.TestCase):
base_flags = [
"--encoder-layers",
"2",
"--decoder-layers",
"2",
"--encoder-embed-dim",
"8",
"--decoder-embed-dim",
"8",
"--restore-file",
"x.pt",
"--log-format",
"json",
"--log-interval",
"1",
"--max-update",
"2",
]
def _train(self, data_dir, extra_flags):
with self.assertLogs() as logs:
train_translation_model(
data_dir,
"transformer_iwslt_de_en",
self.base_flags + extra_flags,
run_validation=True,
extra_valid_flags=["--log-format", "json"],
)
return logs.records
def test_activation_offloading_does_not_change_metrics(self):
"""Neither ----checkpoint-activations nor --offload-activations should change loss"""
with tempfile.TemporaryDirectory("test_transformer_with_act_cpt") as data_dir:
with self.assertLogs():
create_dummy_data(data_dir, num_examples=20)
preprocess_translation_data(data_dir)
offload_logs = self._train(data_dir, ["--offload-activations"])
baseline_logs = self._train(data_dir, [])
assert len(baseline_logs) == len(offload_logs)
baseline_valid_stats = read_last_log_entry(baseline_logs, "valid")
offload_valid_stats = read_last_log_entry(offload_logs, "valid")
baseline_train_stats = read_last_log_entry(baseline_logs, "train")
offload_train_stats = read_last_log_entry(offload_logs, "train")
assert (
baseline_train_stats["train_loss"] == offload_train_stats["train_loss"]
)
assert (
baseline_valid_stats["valid_loss"] == offload_valid_stats["valid_loss"]
)
def test_activation_checkpointing_does_not_change_metrics(self):
"""--checkpoint-activations should not change loss"""
with tempfile.TemporaryDirectory("test_transformer_with_act_cpt") as data_dir:
with self.assertLogs():
create_dummy_data(data_dir, num_examples=20)
preprocess_translation_data(data_dir)
ckpt_logs = self._train(data_dir, ["--checkpoint-activations"])
baseline_logs = self._train(data_dir, [])
assert len(baseline_logs) == len(ckpt_logs)
baseline_train_stats = read_last_log_entry(baseline_logs, "train")
ckpt_train_stats = read_last_log_entry(ckpt_logs, "train")
assert baseline_train_stats["train_loss"] == ckpt_train_stats["train_loss"]
baseline_valid_stats = read_last_log_entry(baseline_logs, "valid")
ckpt_valid_stats = read_last_log_entry(ckpt_logs, "valid")
assert baseline_valid_stats["valid_loss"] == ckpt_valid_stats["valid_loss"]
def create_dummy_roberta_head_data(
data_dir, num_examples=100, maxlen=10, num_classes=2, regression=False
):
input_dir = "input0"
def _create_dummy_data(filename):
random_data = torch.rand(num_examples * maxlen)
input_data = 97 + torch.floor(26 * random_data).int()
if regression:
output_data = torch.rand((num_examples, num_classes))
else:
output_data = 1 + torch.floor(num_classes * torch.rand(num_examples)).int()
with open(os.path.join(data_dir, input_dir, filename + ".out"), "w") as f_in:
label_filename = filename + ".label" if regression else filename + ".out"
with open(os.path.join(data_dir, "label", label_filename), "w") as f_out:
offset = 0
for i in range(num_examples):
# write example input
ex_len = random.randint(1, maxlen)
ex_str = " ".join(map(chr, input_data[offset : offset + ex_len]))
print(ex_str, file=f_in)
# write example label
if regression:
class_str = " ".join(map(str, output_data[i].numpy()))
print(class_str, file=f_out)
else:
class_str = "class{}".format(output_data[i])
print(class_str, file=f_out)
offset += ex_len
os.mkdir(os.path.join(data_dir, input_dir))
os.mkdir(os.path.join(data_dir, "label"))
_create_dummy_data("train")
_create_dummy_data("valid")
_create_dummy_data("test")
def train_masked_lm(data_dir, arch, extra_flags=None):
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
"masked_lm",
data_dir,
"--arch",
arch,
"--optimizer",
"adam",
"--lr",
"0.0001",
"--criterion",
"masked_lm",
"--batch-size",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
"1",
"--ddp-backend",
"no_c10d",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
train.main(train_args)
def train_roberta_head(data_dir, arch, num_classes=2, extra_flags=None):
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
"sentence_prediction",
data_dir,
"--arch",
arch,
"--encoder-layers",
"2",
"--num-classes",
str(num_classes),
"--optimizer",
"adam",
"--lr",
"0.0001",
"--criterion",
"sentence_prediction",
"--max-tokens",
"500",
"--max-positions",
"500",
"--batch-size",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
"1",
"--ddp-backend",
"no_c10d",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
train.main(train_args)
def eval_lm_main(data_dir, extra_flags=None):
eval_lm_parser = options.get_eval_lm_parser()
eval_lm_args = options.parse_args_and_arch(
eval_lm_parser,
[
data_dir,
"--path",
os.path.join(data_dir, "checkpoint_last.pt"),
"--no-progress-bar",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
eval_lm.main(eval_lm_args)
if __name__ == "__main__":
unittest.main()