UnIVAL / fairseq /tests /test_concat_dataset.py
mshukor
init
26fd00c
raw
history blame
1.87 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from fairseq.data import LanguagePairDataset, TokenBlockDataset
from fairseq.data.concat_dataset import ConcatDataset
from tests.test_train import mock_dict
class TestConcatDataset(unittest.TestCase):
def setUp(self):
d = mock_dict()
tokens_1 = torch.LongTensor([1]).view(1, -1)
tokens_ds1 = TokenBlockDataset(
tokens_1,
sizes=[tokens_1.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
self.dataset_1 = LanguagePairDataset(
tokens_ds1, tokens_ds1.sizes, d, shuffle=False
)
tokens_2 = torch.LongTensor([2]).view(1, -1)
tokens_ds2 = TokenBlockDataset(
tokens_2,
sizes=[tokens_2.size(-1)],
block_size=1,
pad=0,
eos=1,
include_targets=False,
)
self.dataset_2 = LanguagePairDataset(
tokens_ds2, tokens_ds2.sizes, d, shuffle=False
)
def test_concat_dataset_basics(self):
d = ConcatDataset([self.dataset_1, self.dataset_2])
assert len(d) == 2
assert d[0]["source"][0] == 1
assert d[1]["source"][0] == 2
d = ConcatDataset([self.dataset_1, self.dataset_2], sample_ratios=[1, 2])
assert len(d) == 3
assert d[0]["source"][0] == 1
assert d[1]["source"][0] == 2
assert d[2]["source"][0] == 2
d = ConcatDataset([self.dataset_1, self.dataset_2], sample_ratios=[2, 1])
assert len(d) == 3
assert d[0]["source"][0] == 1
assert d[1]["source"][0] == 1
assert d[2]["source"][0] == 2