UnIVAL / tasks /mm_tasks /caption.py
mshukor
init
26fd00c
raw
history blame
10.2 kB
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
from dataclasses import dataclass, field
import json
import logging
from typing import Optional
from argparse import Namespace
from itertools import zip_longest
from collections import OrderedDict
import numpy as np
import sacrebleu
import string
from fairseq import metrics, utils
from fairseq.tasks import register_task
from tasks.ofa_task import OFATask, OFAConfig
from data.mm_data.caption_dataset import CaptionDataset
from data.file_dataset import FileDataset
from utils.cider.pyciderevalcap.ciderD.ciderD import CiderD
EVAL_BLEU_ORDER = 4
logger = logging.getLogger(__name__)
@dataclass
class CaptionConfig(OFAConfig):
eval_bleu: bool = field(
default=False, metadata={"help": "evaluation with BLEU scores"}
)
eval_cider: bool = field(
default=False, metadata={"help": "evaluation with CIDEr scores"}
)
eval_args: Optional[str] = field(
default='{}',
metadata={
"help": 'generation args for BLUE or CIDEr scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string'
},
)
eval_print_samples: bool = field(
default=False, metadata={"help": "print sample generations during validation"}
)
eval_cider_cached_tokens: Optional[str] = field(
default=None,
metadata={"help": "path to cached cPickle file used to calculate CIDEr scores"},
)
scst: bool = field(
default=False, metadata={"help": "Self-critical sequence training"}
)
scst_args: str = field(
default='{}',
metadata={
"help": 'generation args for Self-critical sequence training, as JSON string'
},
)
@register_task("caption", dataclass=CaptionConfig)
class CaptionTask(OFATask):
def __init__(self, cfg: CaptionConfig, src_dict, tgt_dict):
super().__init__(cfg, src_dict, tgt_dict)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
paths = self.cfg.data.split(',')
assert len(paths) > 0
if split == 'train':
file_path = paths[(epoch - 1) % (len(paths) - 1)]
else:
file_path = paths[-1]
dataset = FileDataset(file_path, self.cfg.selected_cols)
self.datasets[split] = CaptionDataset(
split,
dataset,
self.bpe,
self.src_dict,
self.tgt_dict,
max_src_length=self.cfg.max_src_length,
max_tgt_length=self.cfg.max_tgt_length,
patch_image_size=self.cfg.patch_image_size,
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std,
scst=getattr(self.cfg, 'scst', False),
use_dataaug=self.cfg.use_dataaug,
read_from_img_path=self.cfg.read_from_img_path,
image_dir=self.cfg.image_dir,
)
def build_model(self, cfg):
model = super().build_model(cfg)
if self.cfg.eval_bleu or self.cfg.eval_cider:
gen_args = json.loads(self.cfg.eval_args)
print(gen_args)
self.sequence_generator = self.build_generator(
[model], Namespace(**gen_args)
)
if self.cfg.eval_cider:
self.CiderD_scorer = CiderD(df=self.cfg.eval_cider_cached_tokens)
if self.cfg.scst:
scst_args = json.loads(self.cfg.scst_args)
self.scst_generator = self.build_generator(
[model], Namespace(**scst_args)
)
return model
def _calculate_cider_scores(self, gen_res, gt_res):
'''
gen_res: generated captions, list of str
gt_idx: list of int, of the same length as gen_res
gt_res: ground truth captions, list of list of str.
gen_res[i] corresponds to gt_res[gt_idx[i]]
Each image can have multiple ground truth captions
'''
gen_res_size = len(gen_res)
res = OrderedDict()
for i in range(gen_res_size):
res[i] = [gen_res[i].strip()]
gts = OrderedDict()
gt_res_ = [
[gt_res[i][j].strip() for j in range(len(gt_res[i]))]
for i in range(len(gt_res))
]
for i in range(gen_res_size):
gts[i] = gt_res_[i]
res_ = [{'image_id': i, 'caption': res[i]} for i in range(len(res))]
_, scores = self.CiderD_scorer.compute_score(gts, res_)
return scores
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = criterion(model, sample)
model.eval()
if self.cfg.eval_bleu or self.cfg.eval_cider:
hyps, refs = self._inference(self.sequence_generator, sample, model)
if self.cfg.eval_bleu:
if self.cfg.eval_tokenized_bleu:
bleu = sacrebleu.corpus_bleu(hyps, list(zip_longest(*refs)), tokenize="none")
else:
bleu = sacrebleu.corpus_bleu(hyps, list(zip_longest(*refs)))
logging_output["_bleu_sys_len"] = bleu.sys_len
logging_output["_bleu_ref_len"] = bleu.ref_len
# we split counts into separate entries so that they can be
# summed efficiently across workers using fast-stat-sync
assert len(bleu.counts) == EVAL_BLEU_ORDER
for i in range(EVAL_BLEU_ORDER):
logging_output["_bleu_counts_" + str(i)] = bleu.counts[i]
logging_output["_bleu_totals_" + str(i)] = bleu.totals[i]
if self.cfg.eval_cider:
scores = self._calculate_cider_scores(hyps, refs)
logging_output["_cider_score_sum"] = scores.sum()
logging_output["_cider_cnt"] = scores.size
return loss, sample_size, logging_output
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
def sum_logs(key):
import torch
result = sum(log.get(key, 0) for log in logging_outputs)
if torch.is_tensor(result):
result = result.cpu()
return result
if self.cfg.eval_bleu:
counts, totals = [], []
for i in range(EVAL_BLEU_ORDER):
counts.append(sum_logs("_bleu_counts_" + str(i)))
totals.append(sum_logs("_bleu_totals_" + str(i)))
if max(totals) > 0:
# log counts as numpy arrays -- log_scalar will sum them correctly
metrics.log_scalar("_bleu_counts", np.array(counts))
metrics.log_scalar("_bleu_totals", np.array(totals))
metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len"))
metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len"))
def compute_bleu(meters):
import inspect
import sacrebleu
fn_sig = inspect.getfullargspec(sacrebleu.compute_bleu)[0]
if "smooth_method" in fn_sig:
smooth = {"smooth_method": "exp"}
else:
smooth = {"smooth": "exp"}
bleu = sacrebleu.compute_bleu(
correct=meters["_bleu_counts"].sum,
total=meters["_bleu_totals"].sum,
sys_len=meters["_bleu_sys_len"].sum,
ref_len=meters["_bleu_ref_len"].sum,
**smooth
)
return round(bleu.score, 2)
metrics.log_derived("bleu", compute_bleu)
if self.cfg.eval_cider:
def compute_cider(meters):
cider = meters["_cider_score_sum"].sum / meters["_cider_cnt"].sum
cider = cider if isinstance(cider, float) else cider.item()
return round(cider, 3)
if sum_logs("_cider_cnt") > 0:
metrics.log_scalar("_cider_score_sum", sum_logs("_cider_score_sum"))
metrics.log_scalar("_cider_cnt", sum_logs("_cider_cnt"))
metrics.log_derived("cider", compute_cider)
def _inference(self, generator, sample, model):
def decode(toks, escape_unk=False):
s = self.tgt_dict.string(
toks.int().cpu(),
# The default unknown string in fairseq is `<unk>`, but
# this is tokenized by sacrebleu as `< unk >`, inflating
# BLEU scores. Instead, we use a somewhat more verbose
# alternative that is unlikely to appear in the real
# reference, but doesn't get split into multiple tokens.
unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"),
)
if self.bpe:
s = self.bpe.decode(s)
return s
gen_out = self.inference_step(generator, [model], sample)
hyps, refs = [], []
transtab = str.maketrans({key: None for key in string.punctuation})
for i in range(len(gen_out)):
try:
decode_tokens = decode(gen_out[i][0]["tokens"])
hyps.append(decode_tokens.translate(transtab).strip())
refs.append(
[
sent.translate(transtab).strip()
for sent in decode(
utils.strip_pad(sample["target"][i], self.tgt_dict.pad()),
escape_unk=True, # don't count <unk> as matches to the hypo
).split('&&')
]
)
except:
print(sample['id'])
print(sample['net_input'].keys())
print(gen_out)
# print(sample['net_input'])
if self.cfg.eval_print_samples:
logger.info("example hypothesis: " + hyps[0])
logger.info("example reference: " + ' && '.join(refs[0]))
return hyps, refs