|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
import json |
|
import logging |
|
import os |
|
import math |
|
import base64 |
|
from typing import Optional |
|
from argparse import Namespace |
|
from omegaconf import DictConfig, OmegaConf |
|
from torchvision import transforms |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
import torch |
|
import numpy as np |
|
from fairseq import metrics |
|
from fairseq.tasks import register_task |
|
from fairseq.dataclass import ChoiceEnum |
|
|
|
from models import search, clip |
|
from models.taming.models.vqgan import GumbelVQ |
|
from data.mm_data.image_gen_dataset import ImageGenDataset |
|
from data.file_dataset import FileDataset |
|
|
|
from tasks.ofa_task import OFATask, OFAConfig |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def custom_to_pil(x): |
|
x = x.detach().cpu() |
|
x = torch.clamp(x, -1., 1.) |
|
x = (x + 1.) / 2. |
|
x = x.permute(1, 2, 0).numpy() |
|
x = (255 * x).astype(np.uint8) |
|
x = Image.fromarray(x) |
|
if not x.mode == "RGB": |
|
x = x.convert("RGB") |
|
return x |
|
|
|
|
|
EVAL_CLIP_METHOD = ChoiceEnum(["ii_sim", "ti_sim"]) |
|
|
|
@dataclass |
|
class ImageGenConfig(OFAConfig): |
|
sampling_times: int = field( |
|
default=1, metadata={"help": "sample times"} |
|
) |
|
|
|
code_image_size: int = field( |
|
default=256, metadata={"help": "code image size"} |
|
) |
|
|
|
|
|
eval_clip_method: EVAL_CLIP_METHOD = field( |
|
default='ti_sim', |
|
metadata={ |
|
"help": "evaluation with CLIP scores. ii_sim means Similarity between generated Images and ref Images, ti_sim means Similarity between generated Images and input Text"} |
|
) |
|
|
|
eval_args: Optional[str] = field( |
|
default='{}', |
|
metadata={ |
|
"help": 'generation args for clip scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string' |
|
}, |
|
) |
|
|
|
scst: bool = field( |
|
default=False, metadata={"help": "Self-critical sequence training"} |
|
) |
|
scst_args: str = field( |
|
default='{}', |
|
metadata={ |
|
"help": 'generation args for Self-critical sequence training, as JSON string' |
|
}, |
|
) |
|
|
|
vqgan_model_path: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "path of vqgan model"} |
|
) |
|
vqgan_config_path: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "path of vqgan config"} |
|
) |
|
clip_model_path: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "clip model path"} |
|
) |
|
gen_images_path: str = field( |
|
default='', metadata={"help": "where to store generated images during evalution. Don't dump images if None. "} |
|
) |
|
|
|
|
|
@register_task("image_gen", dataclass=ImageGenConfig) |
|
class ImageGenTask(OFATask): |
|
def __init__(self, cfg: ImageGenConfig, src_dict, tgt_dict): |
|
super().__init__(cfg, src_dict, tgt_dict) |
|
|
|
def load_dataset(self, split, epoch=1, combine=False, **kwargs): |
|
paths = self.cfg.data.split(',') |
|
assert len(paths) > 0 |
|
|
|
if split == 'train': |
|
file_path = paths[(epoch - 1) % (len(paths) - 1)] |
|
else: |
|
file_path = paths[-1] |
|
dataset = FileDataset(file_path, self.cfg.selected_cols) |
|
|
|
self.datasets[split] = ImageGenDataset( |
|
split, |
|
dataset, |
|
self.bpe, |
|
self.src_dict, |
|
self.tgt_dict, |
|
max_src_length=self.cfg.max_src_length, |
|
code_dict_size=self.cfg.code_dict_size, |
|
code_image_size=self.cfg.code_image_size |
|
) |
|
|
|
def build_model(self, cfg): |
|
model = super().build_model(cfg) |
|
|
|
device = torch.cuda.current_device() |
|
clip_model, clip_preprocess = clip.load(self.cfg.clip_model_path, device=device) |
|
self.clip_model = clip_model |
|
self.clip_preprocess = clip_preprocess |
|
self.clip_model.to(device) |
|
self.clip_model.eval() |
|
|
|
vqgan_config = OmegaConf.load(self.cfg.vqgan_config_path) |
|
vqgan = GumbelVQ(**vqgan_config.model.params) |
|
sd = torch.load(self.cfg.vqgan_model_path, map_location="cpu")["state_dict"] |
|
missing, unexpected = vqgan.load_state_dict(sd, strict=False) |
|
for k, v in vqgan.named_parameters(): |
|
v.requires_grad = False |
|
self.image_tokenizer = vqgan |
|
self.image_tokenizer.to(device) |
|
self.image_tokenizer.eval() |
|
|
|
gen_args = json.loads(self.cfg.eval_args) |
|
self.sequence_generator = self.build_generator( |
|
[model], Namespace(**gen_args) |
|
) |
|
if self.cfg.scst: |
|
scst_args = json.loads(self.cfg.scst_args) |
|
self.scst_generator = self.build_generator( |
|
[model], Namespace(**scst_args) |
|
) |
|
|
|
return model |
|
|
|
def build_generator( |
|
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None, |
|
): |
|
""" |
|
Build a :class:`~fairseq.SequenceGenerator` instance for this |
|
task. |
|
|
|
Args: |
|
models (List[~fairseq.models.FairseqModel]): ensemble of models |
|
args (fairseq.dataclass.configs.GenerationConfig): |
|
configuration object (dataclass) for generation |
|
extra_gen_cls_kwargs (Dict[str, Any]): extra options to pass |
|
through to SequenceGenerator |
|
prefix_allowed_tokens_fn (Callable[[int, torch.Tensor], List[int]]): |
|
If provided, this function constrains the beam search to |
|
allowed tokens only at each step. The provided function |
|
should take 2 arguments: the batch ID (`batch_id: int`) |
|
and a unidimensional tensor of token ids (`inputs_ids: |
|
torch.Tensor`). It has to return a `List[int]` with the |
|
allowed tokens for the next generation step conditioned |
|
on the previously generated tokens (`inputs_ids`) and |
|
the batch ID (`batch_id`). This argument is useful for |
|
constrained generation conditioned on the prefix, as |
|
described in "Autoregressive Entity Retrieval" |
|
(https://arxiv.org/abs/2010.00904) and |
|
https://github.com/facebookresearch/GENRE. |
|
""" |
|
from models.sequence_generator import SequenceGenerator |
|
|
|
|
|
self.sampling_times = self.cfg.sampling_times |
|
sampling = True |
|
sampling_topk = getattr(args, "sampling_topk", -1) |
|
sampling_topp = getattr(args, "sampling_topp", -1.0) |
|
|
|
assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling" |
|
assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling" |
|
|
|
search_strategy = search.Sampling( |
|
self.target_dictionary, sampling_topk, sampling_topp |
|
) |
|
extra_gen_cls_kwargs = extra_gen_cls_kwargs or {} |
|
|
|
return SequenceGenerator( |
|
models, |
|
self.target_dictionary, |
|
beam_size=getattr(args, "beam", 5), |
|
max_len_a=getattr(args, "max_len_a", 0), |
|
max_len_b=getattr(args, "max_len_b", 200), |
|
min_len=getattr(args, "min_len", 1), |
|
normalize_scores=(not getattr(args, "unnormalized", False)), |
|
len_penalty=getattr(args, "lenpen", 1), |
|
unk_penalty=getattr(args, "unkpen", 0), |
|
temperature=getattr(args, "temperature", 1.0), |
|
match_source_len=getattr(args, "match_source_len", False), |
|
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), |
|
search_strategy=search_strategy, |
|
constraint_range=self.cfg.constraint_range, |
|
gen_code=True, |
|
**extra_gen_cls_kwargs, |
|
) |
|
|
|
def compute_ref_image_similarity(self, hyps, ref, device): |
|
hyp_images = torch.stack( |
|
[self.clip_preprocess(hyp_image) for hyp_image in hyps], dim=0 |
|
).to(device) |
|
|
|
ref_images = self.clip_preprocess(ref).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
hyp_image_features = self.clip_model.encode_image(hyp_images) |
|
ref_image_features = self.clip_model.encode_image(ref_images) |
|
hyp_image_features /= hyp_image_features.norm(dim=-1, keepdim=True) |
|
ref_image_features /= ref_image_features.norm(dim=-1, keepdim=True) |
|
similarity = hyp_image_features @ ref_image_features.T |
|
|
|
sorted_score, indices = torch.sort(similarity.view(-1), descending=True) |
|
return sorted_score, indices |
|
|
|
def compute_text_similarity(self, hyps, text, device): |
|
hyp_images = torch.stack( |
|
[self.clip_preprocess(hyp_image) for hyp_image in hyps], dim=0 |
|
).to(device) |
|
|
|
clip_input = clip.tokenize([text]).to(device) |
|
with torch.no_grad(): |
|
hyp_image_features = self.clip_model.encode_image(hyp_images) |
|
hyp_image_features /= hyp_image_features.norm(dim=-1, keepdim=True) |
|
text_features = self.clip_model.encode_text(clip_input) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
ti_similarity = hyp_image_features @ text_features.T |
|
sorted_score, indices = torch.sort(ti_similarity.view(-1), descending=True) |
|
return sorted_score, indices |
|
|
|
def valid_step(self, sample, model, criterion): |
|
loss, sample_size, logging_output = criterion(model, sample) |
|
|
|
model.eval() |
|
device = sample['target'].device |
|
|
|
hyps, ref = self.inference_image(self.sequence_generator, sample, [model]) |
|
scores = [] |
|
|
|
tokens = sample['net_input']['src_tokens'][0].view(-1).tolist() |
|
caption = self.bpe.decode(self.tgt_dict.string([token for token in tokens if token >= 4]))[ |
|
38:].replace('/', '') |
|
if self.cfg.eval_clip_method == 'ii_sim': |
|
similarity_score, indices = self.compute_ref_image_similarity(hyps, ref, device) |
|
elif self.cfg.eval_clip_method == 'ti_sim': |
|
similarity_score, indices = self.compute_text_similarity(hyps, caption, device) |
|
else: |
|
raise ValueError("unsupported eval method.") |
|
|
|
scores.append(similarity_score.max().item()) |
|
sorted_hyps = [hyps[indice] for indice in indices] |
|
|
|
if self.cfg.gen_images_path: |
|
caption_tokens = sample['net_input']['src_tokens'][0].view(-1).tolist() |
|
caption = self.bpe.decode(self.tgt_dict.string([token for token in caption_tokens if token >= 4]))[ |
|
38:].replace('/', '') |
|
self.dump_images(sorted_hyps, text=caption, path=os.path.join(self.cfg.gen_images_path, 'all_results')) |
|
self.dump_images(sorted_hyps, text=caption, path=os.path.join(self.cfg.gen_images_path, 'top1'), topk=1) |
|
|
|
logging_output["_score_sum"] = sum(scores) |
|
logging_output["_score_cnt"] = len(scores) |
|
|
|
return loss, sample_size, logging_output |
|
|
|
def reduce_metrics(self, logging_outputs, criterion): |
|
super().reduce_metrics(logging_outputs, criterion) |
|
|
|
def sum_logs(key): |
|
import torch |
|
result = sum(log.get(key, 0) for log in logging_outputs) |
|
if torch.is_tensor(result): |
|
result = result.cpu() |
|
return result |
|
|
|
def compute_score(meters): |
|
score = meters["_score_sum"].sum / meters["_score_cnt"].sum |
|
score = score if isinstance(score, float) else score.item() |
|
return round(score, 3) |
|
|
|
if sum_logs("_score_cnt") > 0: |
|
metrics.log_scalar("_score_sum", sum_logs("_score_sum")) |
|
metrics.log_scalar("_score_cnt", sum_logs("_score_cnt")) |
|
metrics.log_derived("score", compute_score) |
|
|
|
def inference_image(self, generator, sample, models): |
|
hyps, ref = [], None |
|
for j in range(self.sampling_times): |
|
gen_out = self.inference_step(generator, models, sample) |
|
for i in range(len(gen_out)): |
|
with torch.no_grad(): |
|
tokens = torch.stack([item['tokens'][:-1] for item in gen_out[i]], dim=0) |
|
tokens += -len(self.src_dict) + self.cfg.code_dict_size + self.cfg.num_bins |
|
images = self.image_tokenizer.decode_code( |
|
tokens.view(-1, self.cfg.code_image_size // 8, self.cfg.code_image_size // 8) |
|
) |
|
images = [custom_to_pil(image) for image in images] |
|
hyps += images |
|
if 'code_images' in sample: |
|
ref = Image.open(BytesIO(base64.urlsafe_b64decode(sample['code_images'][0]))).convert('RGB') |
|
|
|
return hyps, ref |
|
|
|
def dump_images(self, images, text, path, topk=None): |
|
os.makedirs(path, exist_ok=True) |
|
if topk: |
|
images = images[:topk] |
|
for j, image in enumerate(images): |
|
save_path = os.path.join(path, f'{text}_{j}.png') |
|
image.save(save_path) |
|
|