|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
import json |
|
import logging |
|
import os |
|
import math |
|
import pickle |
|
from typing import Optional |
|
from argparse import Namespace |
|
from data.file_dataset import FileDataset |
|
|
|
import torch |
|
from fairseq import metrics |
|
from fairseq.tasks import register_task |
|
|
|
from models import search |
|
from data.mm_data.vqa_gen_dataset import VqaGenDataset |
|
from data import data_utils |
|
from tasks.ofa_task import OFAConfig, OFATask |
|
from utils.trie import Trie |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def get_symbols_to_strip_from_output(generator): |
|
if hasattr(generator, "symbols_to_strip_from_output"): |
|
return generator.symbols_to_strip_from_output |
|
else: |
|
return {generator.bos, generator.eos} |
|
|
|
|
|
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None): |
|
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator)) |
|
if bpe is not None: |
|
x = bpe.decode(x) |
|
if tokenizer is not None: |
|
x = tokenizer.decode(x) |
|
return x |
|
|
|
|
|
@dataclass |
|
class VqaGenConfig(OFAConfig): |
|
max_object_length: int = field( |
|
default=30, metadata={"help": "the maximum object sequence length"} |
|
) |
|
ans2label_dict: Optional[str] = field( |
|
default='{"no": 0, "yes":1}', |
|
metadata={"help": 'answer to label dict'}, |
|
) |
|
ans2label_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "path to load ans2label file"}, |
|
) |
|
|
|
add_object: bool = field( |
|
default=False, |
|
metadata={"help": "add object to encoder"}, |
|
) |
|
valid_batch_size: int = field( |
|
default=20, |
|
metadata={"help": "valid batch size per step"}, |
|
) |
|
prompt_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "prompt_type"}, |
|
) |
|
uses_ema: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "whether to use ema"}, |
|
) |
|
val_inference_type: Optional[str] = field( |
|
default='allcand', |
|
metadata={"help": "inference type in validation (allcand or beamsearch), default to allcand"}, |
|
) |
|
eval_args: Optional[str] = field( |
|
default='{"beam":5,"unnormalized":true,"temperature":1.0}', |
|
metadata={ |
|
"help": 'generation args as JSON string for inference, only activated when --val-inference-type=beamsearch' |
|
}, |
|
) |
|
|
|
|
|
@register_task("vqa_gen", dataclass=VqaGenConfig) |
|
class VqaGenTask(OFATask): |
|
def __init__(self, cfg: VqaGenConfig, src_dict, tgt_dict): |
|
super().__init__(cfg, src_dict, tgt_dict) |
|
|
|
self.ans2label_dict = None |
|
if self.cfg.ans2label_file is not None: |
|
self.ans2label_dict = pickle.load(open(self.cfg.ans2label_file, "rb")) |
|
else: |
|
self.ans2label_dict = json.loads(self.cfg.ans2label_dict) |
|
|
|
self.uses_ema = self.cfg.uses_ema |
|
|
|
assert self.cfg.val_inference_type in ["allcand", "beamsearch"], \ |
|
"Unknown inference type encountered: {}, should be allcand or beamsearch.".format(self.cfg.val_inference_type) |
|
|
|
def load_dataset(self, split, epoch=1, combine=False, **kwargs): |
|
paths = self.cfg.data.split(',') |
|
assert len(paths) > 0 |
|
|
|
if split == 'train': |
|
table_path = paths[(epoch - 1) % (len(paths) - 1)] |
|
else: |
|
table_path = paths[-1] |
|
dataset = FileDataset(table_path, self.cfg.selected_cols) |
|
|
|
self.datasets[split] = VqaGenDataset( |
|
split, |
|
dataset, |
|
self.bpe, |
|
self.src_dict, |
|
self.tgt_dict, |
|
max_src_length=self.cfg.max_src_length, |
|
max_object_length=self.cfg.max_object_length, |
|
max_tgt_length=self.cfg.max_tgt_length, |
|
patch_image_size=self.cfg.patch_image_size, |
|
add_object=self.cfg.add_object, |
|
constraint_trie=self.constraint_trie, |
|
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std, |
|
prompt_type=self.cfg.prompt_type, |
|
read_from_img_path=self.cfg.read_from_img_path, |
|
image_dir=self.cfg.image_dir, |
|
) |
|
|
|
def build_model(self, cfg): |
|
model = super().build_model(cfg) |
|
answer_item_list = [] |
|
self.index2ans = {} |
|
self.constraint_trie = Trie(self.tgt_dict.eos()) |
|
for i, answer in enumerate(self.ans2label_dict.keys()): |
|
answer_item = self.tgt_dict.encode_line( |
|
line=self.bpe.encode(' ' + answer), |
|
add_if_not_exist=False, |
|
append_eos=False |
|
).long() |
|
answer_item_list.append(answer_item) |
|
self.index2ans[i] = answer |
|
self.constraint_trie.insert([self.tgt_dict.bos()] + answer_item.tolist() + [self.tgt_dict.eos()]) |
|
|
|
constraint_mask_list = [] |
|
for answer_item in answer_item_list: |
|
constraint_mask = torch.zeros((len(answer_item)+1, len(self.tgt_dict))).bool() |
|
for i in range(len(answer_item)+1): |
|
constraint_prefix_token = [self.src_dict.bos()] + answer_item[:i].tolist() |
|
constraint_nodes = self.constraint_trie.get_next_layer(constraint_prefix_token) |
|
constraint_mask[i][constraint_nodes] = True |
|
constraint_mask_list.append(constraint_mask) |
|
|
|
if self.cfg.val_inference_type == "allcand": |
|
self.valid_answers_list = [] |
|
self.valid_constraint_masks_list = [] |
|
for i in range(0, len(answer_item_list), self.cfg.valid_batch_size): |
|
self.valid_answers_list += [answer_item_list[i:i+self.cfg.valid_batch_size]] |
|
self.valid_constraint_masks_list += [constraint_mask_list[i:i+self.cfg.valid_batch_size]] |
|
elif self.cfg.val_inference_type == "beamsearch": |
|
gen_args = json.loads(self.cfg.eval_args) |
|
self.generator = self.build_generator( |
|
[model], Namespace(**gen_args) |
|
) |
|
else: |
|
raise NotImplementedError("Error: Unknown inference type encountered.") |
|
|
|
return model |
|
|
|
def build_generator( |
|
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None, |
|
): |
|
seq_generator = super().build_generator(models, args, seq_gen_cls, extra_gen_cls_kwargs, prefix_allowed_tokens_fn) |
|
seq_generator.constraint_trie = self.constraint_trie |
|
|
|
return seq_generator |
|
|
|
def valid_step(self, sample, model, criterion, **extra_kwargs): |
|
loss, sample_size, logging_output = super().valid_step(sample, model, criterion) |
|
|
|
if self.uses_ema: |
|
assert 'ema_model' in extra_kwargs and extra_kwargs['ema_model'] is not None |
|
if self.uses_ema: |
|
eval_model = extra_kwargs['ema_model'] |
|
else: |
|
eval_model = model |
|
|
|
eval_model.eval() |
|
with torch.no_grad(): |
|
if self.cfg.val_inference_type == "allcand": |
|
encoder_out = eval_model.encoder( |
|
sample["net_input"]["src_tokens"], |
|
src_lengths=sample["net_input"]["src_lengths"], |
|
patch_images=sample["net_input"]["patch_images"], |
|
patch_masks=sample["net_input"]["patch_masks"], |
|
patch_types=sample["net_input"]["patch_types"], |
|
) |
|
device = sample["net_input"]["src_tokens"].device |
|
eos_item = torch.tensor([self.src_dict.eos()]) |
|
pad = self.src_dict.pad() |
|
valid_result = [] |
|
for valid_answers, valid_constraint_masks in zip(self.valid_answers_list, self.valid_constraint_masks_list): |
|
valid_size = len(valid_answers) |
|
valid_tgt_items = [ |
|
torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item]) |
|
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers |
|
] |
|
valid_prev_items = [ |
|
torch.cat([torch.tensor(decoder_prompt), valid_answer]) |
|
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers |
|
] |
|
valid_constraint_mask_items = [ |
|
torch.cat([torch.zeros(len(decoder_prompt)-1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask], dim=0) |
|
for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks |
|
] |
|
valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad, left_pad=False).to(device) |
|
valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad, left_pad=False).to(device) |
|
valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad, left_pad=False).to(device) |
|
|
|
new_encoder_out = {} |
|
new_encoder_out["encoder_out"] = [ |
|
encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1) |
|
] |
|
new_encoder_out["encoder_padding_mask"] = [ |
|
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0) |
|
] |
|
new_encoder_out["position_embeddings"] = [ |
|
encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0) |
|
] |
|
|
|
decoder_out = eval_model.decoder(valid_prev_output, encoder_out=new_encoder_out) |
|
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf) |
|
lprobs = eval_model.get_normalized_probs(decoder_out, log_probs=True) |
|
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1) |
|
scores = scores.masked_fill(valid_tgt.eq(self.tgt_dict.pad()), 0) |
|
scores = scores.masked_fill((~valid_constraint_masks).all(2), 0) |
|
scores = scores.sum(1) |
|
scores = scores.view(-1, valid_size) |
|
valid_result.append(scores) |
|
|
|
valid_result = torch.cat(valid_result, dim=-1) |
|
predicts = valid_result.argmax(1).tolist() |
|
hyps = [self.index2ans[predict_index] for predict_index in predicts] |
|
|
|
elif self.cfg.val_inference_type == "beamsearch": |
|
raw_hyps = self.inference_step(self.generator, [eval_model], sample, prefix_tokens=sample['prefix_tokens']) |
|
hyps = [] |
|
for i, sample_id in enumerate(sample["id"].tolist()): |
|
try: |
|
prefix_len = sample['prefix_tokens'][i].ne(1).sum().item() |
|
detok_hypo_str = decode_fn(raw_hyps[i][0]["tokens"][prefix_len:], self.tgt_dict, self.bpe, self.generator) |
|
hyps.append(detok_hypo_str.strip()) |
|
|
|
except: |
|
print(sample['id']) |
|
print(raw_hyps) |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
raise NotImplementedError("Error: Unknown inference type encountered.") |
|
|
|
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)] |
|
logging_output["_vqa_score_sum"] = sum(scores) |
|
logging_output["_vqa_cnt"] = len(scores) |
|
|
|
return loss, sample_size, logging_output |
|
|
|
def reduce_metrics(self, logging_outputs, criterion): |
|
super().reduce_metrics(logging_outputs, criterion) |
|
|
|
def sum_logs(key): |
|
import torch |
|
result = sum(log.get(key, 0) for log in logging_outputs) |
|
if torch.is_tensor(result): |
|
result = result.cpu() |
|
return result |
|
|
|
def compute_score(meters): |
|
score = meters["_vqa_score_sum"].sum / meters["_vqa_cnt"].sum |
|
score = score if isinstance(score, float) else score.item() |
|
return round(score, 4) |
|
|
|
if sum_logs("_vqa_cnt") > 0: |
|
metrics.log_scalar("_vqa_score_sum", sum_logs("_vqa_score_sum")) |
|
metrics.log_scalar("_vqa_cnt", sum_logs("_vqa_cnt")) |
|
metrics.log_derived("vqa_score", compute_score) |
|
|