|
|
|
|
|
|
|
|
|
|
|
import math |
|
import os |
|
import re |
|
import subprocess |
|
from contextlib import redirect_stdout |
|
|
|
from fairseq import options |
|
from fairseq_cli import eval_lm, preprocess |
|
|
|
|
|
def reprocess(fle): |
|
|
|
|
|
|
|
|
|
|
|
|
|
with open(fle, "r") as f: |
|
txt = f.read() |
|
|
|
"""reprocess generate.py output""" |
|
p = re.compile(r"[STHP][-]\d+\s*") |
|
hp = re.compile(r"(\s*[-]?\d+[.]?\d+\s*)|(\s*(-inf)\s*)") |
|
source_dict = {} |
|
hypothesis_dict = {} |
|
score_dict = {} |
|
target_dict = {} |
|
pos_score_dict = {} |
|
lines = txt.split("\n") |
|
|
|
for line in lines: |
|
line += "\n" |
|
prefix = re.search(p, line) |
|
if prefix is not None: |
|
assert len(prefix.group()) > 2, "prefix id not found" |
|
_, j = prefix.span() |
|
id_num = prefix.group()[2:] |
|
id_num = int(id_num) |
|
line_type = prefix.group()[0] |
|
if line_type == "H": |
|
h_txt = line[j:] |
|
hypo = re.search(hp, h_txt) |
|
assert ( |
|
hypo is not None |
|
), "regular expression failed to find the hypothesis scoring" |
|
_, i = hypo.span() |
|
score = hypo.group() |
|
if id_num in hypothesis_dict: |
|
hypothesis_dict[id_num].append(h_txt[i:]) |
|
score_dict[id_num].append(float(score)) |
|
else: |
|
hypothesis_dict[id_num] = [h_txt[i:]] |
|
score_dict[id_num] = [float(score)] |
|
|
|
elif line_type == "S": |
|
source_dict[id_num] = line[j:] |
|
elif line_type == "T": |
|
target_dict[id_num] = line[j:] |
|
elif line_type == "P": |
|
pos_scores = (line[j:]).split() |
|
pos_scores = [float(x) for x in pos_scores] |
|
if id_num in pos_score_dict: |
|
pos_score_dict[id_num].append(pos_scores) |
|
else: |
|
pos_score_dict[id_num] = [pos_scores] |
|
|
|
return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict |
|
|
|
|
|
def reprocess_nbest(fle): |
|
"""reprocess interactive.py output""" |
|
with open(fle, "r") as f: |
|
txt = f.read() |
|
|
|
source_dict = {} |
|
hypothesis_dict = {} |
|
score_dict = {} |
|
target_dict = {} |
|
pos_score_dict = {} |
|
lines = txt.split("\n") |
|
|
|
hp = re.compile(r"[-]?\d+[.]?\d+") |
|
j = -1 |
|
|
|
for _i, line in enumerate(lines): |
|
line += "\n" |
|
line_type = line[0] |
|
|
|
if line_type == "H": |
|
hypo = re.search(hp, line) |
|
_, start_index = hypo.span() |
|
score = hypo.group() |
|
if j in score_dict: |
|
score_dict[j].append(float(score)) |
|
hypothesis_dict[j].append(line[start_index:].strip("\t")) |
|
else: |
|
score_dict[j] = [float(score)] |
|
hypothesis_dict[j] = [line[start_index:].strip("\t")] |
|
elif line_type == "O": |
|
j += 1 |
|
source_dict[j] = line[2:] |
|
|
|
target_dict[j] = "filler" |
|
|
|
elif line_type == "P": |
|
pos_scores = [float(pos_score) for pos_score in line.split()[1:]] |
|
if j in pos_score_dict: |
|
pos_score_dict[j].append(pos_scores) |
|
else: |
|
pos_score_dict[j] = [pos_scores] |
|
|
|
assert source_dict.keys() == hypothesis_dict.keys() |
|
assert source_dict.keys() == pos_score_dict.keys() |
|
assert source_dict.keys() == score_dict.keys() |
|
|
|
return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict |
|
|
|
|
|
def write_reprocessed( |
|
sources, |
|
hypos, |
|
targets, |
|
source_outfile, |
|
hypo_outfile, |
|
target_outfile, |
|
right_to_left=False, |
|
prefix_len=None, |
|
bpe_symbol=None, |
|
target_prefix_frac=None, |
|
source_prefix_frac=None, |
|
): |
|
|
|
"""writes nbest hypothesis for rescoring""" |
|
assert not ( |
|
prefix_len is not None and target_prefix_frac is not None |
|
), "in writing reprocessed, only one type of prefix may be used" |
|
assert not ( |
|
prefix_len is not None and source_prefix_frac is not None |
|
), "in writing reprocessed, only one type of prefix may be used" |
|
assert not ( |
|
target_prefix_frac is not None and source_prefix_frac is not None |
|
), "in writing reprocessed, only one type of prefix may be used" |
|
|
|
with open(source_outfile, "w") as source_file, open( |
|
hypo_outfile, "w" |
|
) as hypo_file, open(target_outfile, "w") as target_file: |
|
|
|
assert len(sources) == len(hypos), "sources and hypos list length mismatch" |
|
if right_to_left: |
|
for i in range(len(sources)): |
|
for j in range(len(hypos[i])): |
|
if prefix_len is None: |
|
hypo_file.write(make_right_to_left(hypos[i][j]) + "\n") |
|
else: |
|
raise NotImplementedError() |
|
source_file.write(make_right_to_left(sources[i]) + "\n") |
|
target_file.write(make_right_to_left(targets[i]) + "\n") |
|
else: |
|
for i in sorted(sources.keys()): |
|
for j in range(len(hypos[i])): |
|
if prefix_len is not None: |
|
shortened = ( |
|
get_prefix_no_bpe(hypos[i][j], bpe_symbol, prefix_len) |
|
+ "\n" |
|
) |
|
hypo_file.write(shortened) |
|
source_file.write(sources[i]) |
|
target_file.write(targets[i]) |
|
elif target_prefix_frac is not None: |
|
num_words, shortened, num_bpe_tokens = calc_length_from_frac( |
|
hypos[i][j], target_prefix_frac, bpe_symbol |
|
) |
|
shortened += "\n" |
|
hypo_file.write(shortened) |
|
source_file.write(sources[i]) |
|
target_file.write(targets[i]) |
|
elif source_prefix_frac is not None: |
|
num_words, shortened, num_bpe_tokensn = calc_length_from_frac( |
|
sources[i], source_prefix_frac, bpe_symbol |
|
) |
|
shortened += "\n" |
|
hypo_file.write(hypos[i][j]) |
|
source_file.write(shortened) |
|
target_file.write(targets[i]) |
|
else: |
|
hypo_file.write(hypos[i][j]) |
|
source_file.write(sources[i]) |
|
target_file.write(targets[i]) |
|
|
|
|
|
def calc_length_from_frac(bpe_sentence, prefix_frac, bpe_symbol): |
|
|
|
no_bpe_sen = remove_bpe(bpe_sentence, bpe_symbol) |
|
len_sen = len(no_bpe_sen.split()) |
|
|
|
num_words = math.ceil(len_sen * prefix_frac) |
|
prefix = get_prefix_no_bpe(bpe_sentence, bpe_symbol, num_words) |
|
num_bpe_tokens = len(prefix.split()) |
|
return num_words, prefix, num_bpe_tokens |
|
|
|
|
|
def get_prefix(sentence, prefix_len): |
|
"""assuming no bpe, gets the prefix of the sentence with prefix_len words""" |
|
tokens = sentence.strip("\n").split() |
|
if prefix_len >= len(tokens): |
|
return sentence.strip("\n") |
|
else: |
|
return " ".join(tokens[:prefix_len]) |
|
|
|
|
|
def get_prefix_no_bpe(sentence, bpe_symbol, prefix_len): |
|
if bpe_symbol is None: |
|
return get_prefix(sentence, prefix_len) |
|
else: |
|
return " ".join(get_prefix_from_len(sentence.split(), bpe_symbol, prefix_len)) |
|
|
|
|
|
def get_prefix_from_len(sentence, bpe_symbol, prefix_len): |
|
"""get the prefix of sentence with bpe, with prefix len in terms of words, not bpe tokens""" |
|
bpe_count = sum([bpe_symbol.strip(" ") in t for t in sentence[:prefix_len]]) |
|
if bpe_count == 0: |
|
return sentence[:prefix_len] |
|
else: |
|
return sentence[:prefix_len] + get_prefix_from_len( |
|
sentence[prefix_len:], bpe_symbol, bpe_count |
|
) |
|
|
|
|
|
def get_num_bpe_tokens_from_len(sentence, bpe_symbol, prefix_len): |
|
"""given a prefix length in terms of words, return the number of bpe tokens""" |
|
prefix = get_prefix_no_bpe(sentence, bpe_symbol, prefix_len) |
|
assert len(remove_bpe(prefix, bpe_symbol).split()) <= prefix_len |
|
return len(prefix.split(" ")) |
|
|
|
|
|
def make_right_to_left(line): |
|
tokens = line.split() |
|
tokens.reverse() |
|
new_line = " ".join(tokens) |
|
return new_line |
|
|
|
|
|
def remove_bpe(line, bpe_symbol): |
|
line = line.replace("\n", "") |
|
line = (line + " ").replace(bpe_symbol, "").rstrip() |
|
return line + ("\n") |
|
|
|
|
|
def remove_bpe_dict(pred_dict, bpe_symbol): |
|
new_dict = {} |
|
for i in pred_dict: |
|
if type(pred_dict[i]) == list: |
|
new_list = [remove_bpe(elem, bpe_symbol) for elem in pred_dict[i]] |
|
new_dict[i] = new_list |
|
else: |
|
new_dict[i] = remove_bpe(pred_dict[i], bpe_symbol) |
|
return new_dict |
|
|
|
|
|
def parse_bleu_scoring(line): |
|
p = re.compile(r"(BLEU4 = )\d+[.]\d+") |
|
res = re.search(p, line) |
|
assert res is not None, line |
|
return float(res.group()[8:]) |
|
|
|
|
|
def get_full_from_prefix(hypo_prefix, hypos): |
|
"""given a hypo prefix, recover the first hypo from the list of complete hypos beginning with that prefix""" |
|
for hypo in hypos: |
|
hypo_prefix = hypo_prefix.strip("\n") |
|
len_prefix = len(hypo_prefix) |
|
if hypo[:len_prefix] == hypo_prefix: |
|
return hypo |
|
|
|
raise Exception() |
|
|
|
|
|
def get_score( |
|
a, |
|
b, |
|
c, |
|
target_len, |
|
bitext_score1, |
|
bitext_score2=None, |
|
lm_score=None, |
|
lenpen=None, |
|
src_len=None, |
|
tgt_len=None, |
|
bitext1_backwards=False, |
|
bitext2_backwards=False, |
|
normalize=False, |
|
): |
|
if bitext1_backwards: |
|
bitext1_norm = src_len |
|
else: |
|
bitext1_norm = tgt_len |
|
if bitext_score2 is not None: |
|
if bitext2_backwards: |
|
bitext2_norm = src_len |
|
else: |
|
bitext2_norm = tgt_len |
|
else: |
|
bitext2_norm = 1 |
|
bitext_score2 = 0 |
|
if normalize: |
|
score = ( |
|
a * bitext_score1 / bitext1_norm |
|
+ b * bitext_score2 / bitext2_norm |
|
+ c * lm_score / src_len |
|
) |
|
else: |
|
score = a * bitext_score1 + b * bitext_score2 + c * lm_score |
|
|
|
if lenpen is not None: |
|
score /= (target_len) ** float(lenpen) |
|
|
|
return score |
|
|
|
|
|
class BitextOutput(object): |
|
def __init__( |
|
self, |
|
output_file, |
|
backwards, |
|
right_to_left, |
|
bpe_symbol, |
|
prefix_len=None, |
|
target_prefix_frac=None, |
|
source_prefix_frac=None, |
|
): |
|
"""process output from rescoring""" |
|
source, hypo, score, target, pos_score = reprocess(output_file) |
|
if backwards: |
|
self.hypo_fracs = source_prefix_frac |
|
else: |
|
self.hypo_fracs = target_prefix_frac |
|
|
|
|
|
score, num_bpe_tokens = get_score_from_pos( |
|
pos_score, prefix_len, hypo, bpe_symbol, self.hypo_fracs, backwards |
|
) |
|
source_lengths = {} |
|
target_lengths = {} |
|
|
|
assert hypo.keys() == source.keys(), "key mismatch" |
|
if backwards: |
|
tmp = hypo |
|
hypo = source |
|
source = tmp |
|
for i in source: |
|
|
|
if backwards: |
|
len_src = len(source[i][0].split()) |
|
|
|
if len_src == num_bpe_tokens[i][0] - 1: |
|
source_lengths[i] = num_bpe_tokens[i][0] - 1 |
|
else: |
|
source_lengths[i] = num_bpe_tokens[i][0] |
|
|
|
target_lengths[i] = len(hypo[i].split()) |
|
|
|
source[i] = remove_bpe(source[i][0], bpe_symbol) |
|
target[i] = remove_bpe(target[i], bpe_symbol) |
|
hypo[i] = remove_bpe(hypo[i], bpe_symbol) |
|
|
|
score[i] = float(score[i][0]) |
|
pos_score[i] = pos_score[i][0] |
|
|
|
else: |
|
len_tgt = len(hypo[i][0].split()) |
|
|
|
if len_tgt == num_bpe_tokens[i][0] - 1: |
|
target_lengths[i] = num_bpe_tokens[i][0] - 1 |
|
else: |
|
target_lengths[i] = num_bpe_tokens[i][0] |
|
|
|
source_lengths[i] = len(source[i].split()) |
|
|
|
if right_to_left: |
|
source[i] = remove_bpe(make_right_to_left(source[i]), bpe_symbol) |
|
target[i] = remove_bpe(make_right_to_left(target[i]), bpe_symbol) |
|
hypo[i] = remove_bpe(make_right_to_left(hypo[i][0]), bpe_symbol) |
|
score[i] = float(score[i][0]) |
|
pos_score[i] = pos_score[i][0] |
|
else: |
|
assert ( |
|
len(hypo[i]) == 1 |
|
), "expected only one hypothesis per source sentence" |
|
source[i] = remove_bpe(source[i], bpe_symbol) |
|
target[i] = remove_bpe(target[i], bpe_symbol) |
|
hypo[i] = remove_bpe(hypo[i][0], bpe_symbol) |
|
score[i] = float(score[i][0]) |
|
pos_score[i] = pos_score[i][0] |
|
|
|
self.rescore_source = source |
|
self.rescore_hypo = hypo |
|
self.rescore_score = score |
|
self.rescore_target = target |
|
self.rescore_pos_score = pos_score |
|
self.backwards = backwards |
|
self.right_to_left = right_to_left |
|
self.target_lengths = target_lengths |
|
self.source_lengths = source_lengths |
|
|
|
|
|
class BitextOutputFromGen(object): |
|
def __init__( |
|
self, |
|
predictions_bpe_file, |
|
bpe_symbol=None, |
|
nbest=False, |
|
prefix_len=None, |
|
target_prefix_frac=None, |
|
): |
|
if nbest: |
|
( |
|
pred_source, |
|
pred_hypo, |
|
pred_score, |
|
pred_target, |
|
pred_pos_score, |
|
) = reprocess_nbest(predictions_bpe_file) |
|
else: |
|
pred_source, pred_hypo, pred_score, pred_target, pred_pos_score = reprocess( |
|
predictions_bpe_file |
|
) |
|
|
|
assert len(pred_source) == len(pred_hypo) |
|
assert len(pred_source) == len(pred_score) |
|
assert len(pred_source) == len(pred_target) |
|
assert len(pred_source) == len(pred_pos_score) |
|
|
|
|
|
pred_score, num_bpe_tokens = get_score_from_pos( |
|
pred_pos_score, prefix_len, pred_hypo, bpe_symbol, target_prefix_frac, False |
|
) |
|
|
|
self.source = pred_source |
|
self.target = pred_target |
|
self.score = pred_score |
|
self.pos_score = pred_pos_score |
|
self.hypo = pred_hypo |
|
self.target_lengths = {} |
|
self.source_lengths = {} |
|
|
|
self.no_bpe_source = remove_bpe_dict(pred_source.copy(), bpe_symbol) |
|
self.no_bpe_hypo = remove_bpe_dict(pred_hypo.copy(), bpe_symbol) |
|
self.no_bpe_target = remove_bpe_dict(pred_target.copy(), bpe_symbol) |
|
|
|
|
|
self.rescore_source = {} |
|
self.rescore_target = {} |
|
self.rescore_pos_score = {} |
|
self.rescore_hypo = {} |
|
self.rescore_score = {} |
|
self.num_hypos = {} |
|
self.backwards = False |
|
self.right_to_left = False |
|
|
|
index = 0 |
|
|
|
for i in sorted(pred_source.keys()): |
|
for j in range(len(pred_hypo[i])): |
|
|
|
self.target_lengths[index] = len(self.hypo[i][j].split()) |
|
self.source_lengths[index] = len(self.source[i].split()) |
|
|
|
self.rescore_source[index] = self.no_bpe_source[i] |
|
self.rescore_target[index] = self.no_bpe_target[i] |
|
self.rescore_hypo[index] = self.no_bpe_hypo[i][j] |
|
self.rescore_score[index] = float(pred_score[i][j]) |
|
self.rescore_pos_score[index] = pred_pos_score[i][j] |
|
self.num_hypos[index] = len(pred_hypo[i]) |
|
index += 1 |
|
|
|
|
|
def get_score_from_pos( |
|
pos_score_dict, prefix_len, hypo_dict, bpe_symbol, hypo_frac, backwards |
|
): |
|
score_dict = {} |
|
num_bpe_tokens_dict = {} |
|
assert prefix_len is None or hypo_frac is None |
|
for key in pos_score_dict: |
|
score_dict[key] = [] |
|
num_bpe_tokens_dict[key] = [] |
|
for i in range(len(pos_score_dict[key])): |
|
if prefix_len is not None and not backwards: |
|
num_bpe_tokens = get_num_bpe_tokens_from_len( |
|
hypo_dict[key][i], bpe_symbol, prefix_len |
|
) |
|
score_dict[key].append(sum(pos_score_dict[key][i][:num_bpe_tokens])) |
|
num_bpe_tokens_dict[key].append(num_bpe_tokens) |
|
elif hypo_frac is not None: |
|
num_words, shortened, hypo_prefix_len = calc_length_from_frac( |
|
hypo_dict[key][i], hypo_frac, bpe_symbol |
|
) |
|
score_dict[key].append(sum(pos_score_dict[key][i][:hypo_prefix_len])) |
|
num_bpe_tokens_dict[key].append(hypo_prefix_len) |
|
else: |
|
score_dict[key].append(sum(pos_score_dict[key][i])) |
|
num_bpe_tokens_dict[key].append(len(pos_score_dict[key][i])) |
|
return score_dict, num_bpe_tokens_dict |
|
|
|
|
|
class LMOutput(object): |
|
def __init__( |
|
self, |
|
lm_score_file, |
|
lm_dict=None, |
|
prefix_len=None, |
|
bpe_symbol=None, |
|
target_prefix_frac=None, |
|
): |
|
( |
|
lm_sentences, |
|
lm_sen_scores, |
|
lm_sen_pos_scores, |
|
lm_no_bpe_sentences, |
|
lm_bpe_tokens, |
|
) = parse_lm( |
|
lm_score_file, |
|
prefix_len=prefix_len, |
|
bpe_symbol=bpe_symbol, |
|
target_prefix_frac=target_prefix_frac, |
|
) |
|
|
|
self.sentences = lm_sentences |
|
self.score = lm_sen_scores |
|
self.pos_score = lm_sen_pos_scores |
|
self.lm_dict = lm_dict |
|
self.no_bpe_sentences = lm_no_bpe_sentences |
|
self.bpe_tokens = lm_bpe_tokens |
|
|
|
|
|
def parse_lm(input_file, prefix_len=None, bpe_symbol=None, target_prefix_frac=None): |
|
"""parse output of eval_lm""" |
|
with open(input_file, "r") as f: |
|
text = f.readlines() |
|
text = text[7:] |
|
cleaned_text = text[:-2] |
|
|
|
sentences = {} |
|
sen_scores = {} |
|
sen_pos_scores = {} |
|
no_bpe_sentences = {} |
|
num_bpe_tokens_dict = {} |
|
for _i, line in enumerate(cleaned_text): |
|
tokens = line.split() |
|
if tokens[0].isdigit(): |
|
line_id = int(tokens[0]) |
|
scores = [float(x[1:-1]) for x in tokens[2::2]] |
|
sentences[line_id] = " ".join(tokens[1::2][:-1]) + "\n" |
|
if bpe_symbol is not None: |
|
|
|
bpe_sen = " ".join(tokens[1::2][:-1]) + "\n" |
|
no_bpe_sen = remove_bpe(bpe_sen, bpe_symbol) |
|
no_bpe_sentences[line_id] = no_bpe_sen |
|
|
|
if prefix_len is not None: |
|
num_bpe_tokens = get_num_bpe_tokens_from_len( |
|
bpe_sen, bpe_symbol, prefix_len |
|
) |
|
sen_scores[line_id] = sum(scores[:num_bpe_tokens]) |
|
num_bpe_tokens_dict[line_id] = num_bpe_tokens |
|
elif target_prefix_frac is not None: |
|
num_words, shortened, target_prefix_len = calc_length_from_frac( |
|
bpe_sen, target_prefix_frac, bpe_symbol |
|
) |
|
sen_scores[line_id] = sum(scores[:target_prefix_len]) |
|
num_bpe_tokens_dict[line_id] = target_prefix_len |
|
else: |
|
sen_scores[line_id] = sum(scores) |
|
num_bpe_tokens_dict[line_id] = len(scores) |
|
|
|
sen_pos_scores[line_id] = scores |
|
|
|
return sentences, sen_scores, sen_pos_scores, no_bpe_sentences, num_bpe_tokens_dict |
|
|
|
|
|
def get_directories( |
|
data_dir_name, |
|
num_rescore, |
|
gen_subset, |
|
fw_name, |
|
shard_id, |
|
num_shards, |
|
sampling=False, |
|
prefix_len=None, |
|
target_prefix_frac=None, |
|
source_prefix_frac=None, |
|
): |
|
nbest_file_id = ( |
|
"nbest_" |
|
+ str(num_rescore) |
|
+ "_subset_" |
|
+ gen_subset |
|
+ "_fw_name_" |
|
+ fw_name |
|
+ "_shard_" |
|
+ str(shard_id) |
|
+ "_of_" |
|
+ str(num_shards) |
|
) |
|
|
|
if sampling: |
|
nbest_file_id += "_sampling" |
|
|
|
|
|
pre_gen = ( |
|
os.path.join(os.path.dirname(__file__)) |
|
+ "/rerank_data/" |
|
+ data_dir_name |
|
+ "/" |
|
+ nbest_file_id |
|
) |
|
|
|
left_to_right_preprocessed_dir = pre_gen + "/left_to_right_preprocessed" |
|
if source_prefix_frac is not None: |
|
left_to_right_preprocessed_dir = ( |
|
left_to_right_preprocessed_dir + "/prefix_frac" + str(source_prefix_frac) |
|
) |
|
|
|
right_to_left_preprocessed_dir = pre_gen + "/right_to_left_preprocessed" |
|
|
|
backwards_preprocessed_dir = pre_gen + "/backwards" |
|
if target_prefix_frac is not None: |
|
backwards_preprocessed_dir = ( |
|
backwards_preprocessed_dir + "/prefix_frac" + str(target_prefix_frac) |
|
) |
|
elif prefix_len is not None: |
|
backwards_preprocessed_dir = ( |
|
backwards_preprocessed_dir + "/prefix_" + str(prefix_len) |
|
) |
|
|
|
|
|
lm_preprocessed_dir = pre_gen + "/lm_preprocessed" |
|
|
|
return ( |
|
pre_gen, |
|
left_to_right_preprocessed_dir, |
|
right_to_left_preprocessed_dir, |
|
backwards_preprocessed_dir, |
|
lm_preprocessed_dir, |
|
) |
|
|
|
|
|
def lm_scoring( |
|
preprocess_directory, |
|
bpe_status, |
|
gen_output, |
|
pre_gen, |
|
cur_lm_dict, |
|
cur_lm_name, |
|
cur_language_model, |
|
cur_lm_bpe_code, |
|
batch_size, |
|
lm_score_file, |
|
target_lang, |
|
source_lang, |
|
prefix_len=None, |
|
): |
|
if prefix_len is not None: |
|
assert ( |
|
bpe_status == "different" |
|
), "bpe status must be different to use prefix len" |
|
if bpe_status == "no bpe": |
|
|
|
write_reprocessed( |
|
gen_output.no_bpe_source, |
|
gen_output.no_bpe_hypo, |
|
gen_output.no_bpe_target, |
|
pre_gen + "/rescore_data_no_bpe.de", |
|
pre_gen + "/rescore_data_no_bpe.en", |
|
pre_gen + "/reference_file_no_bpe", |
|
) |
|
|
|
preprocess_lm_param = [ |
|
"--only-source", |
|
"--trainpref", |
|
pre_gen + "/rescore_data_no_bpe." + target_lang, |
|
"--srcdict", |
|
cur_lm_dict, |
|
"--destdir", |
|
preprocess_directory, |
|
] |
|
preprocess_parser = options.get_preprocessing_parser() |
|
input_args = preprocess_parser.parse_args(preprocess_lm_param) |
|
preprocess.main(input_args) |
|
|
|
eval_lm_param = [ |
|
preprocess_directory, |
|
"--path", |
|
cur_language_model, |
|
"--output-word-probs", |
|
"--batch-size", |
|
str(batch_size), |
|
"--max-tokens", |
|
"1024", |
|
"--sample-break-mode", |
|
"eos", |
|
"--gen-subset", |
|
"train", |
|
] |
|
|
|
eval_lm_parser = options.get_eval_lm_parser() |
|
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) |
|
|
|
with open(lm_score_file, "w") as f: |
|
with redirect_stdout(f): |
|
eval_lm.main(input_args) |
|
|
|
elif bpe_status == "shared": |
|
preprocess_lm_param = [ |
|
"--only-source", |
|
"--trainpref", |
|
pre_gen + "/rescore_data." + target_lang, |
|
"--srcdict", |
|
cur_lm_dict, |
|
"--destdir", |
|
preprocess_directory, |
|
] |
|
preprocess_parser = options.get_preprocessing_parser() |
|
input_args = preprocess_parser.parse_args(preprocess_lm_param) |
|
preprocess.main(input_args) |
|
|
|
eval_lm_param = [ |
|
preprocess_directory, |
|
"--path", |
|
cur_language_model, |
|
"--output-word-probs", |
|
"--batch-size", |
|
str(batch_size), |
|
"--sample-break-mode", |
|
"eos", |
|
"--gen-subset", |
|
"train", |
|
] |
|
|
|
eval_lm_parser = options.get_eval_lm_parser() |
|
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) |
|
|
|
with open(lm_score_file, "w") as f: |
|
with redirect_stdout(f): |
|
eval_lm.main(input_args) |
|
|
|
elif bpe_status == "different": |
|
rescore_file = pre_gen + "/rescore_data_no_bpe" |
|
rescore_bpe = pre_gen + "/rescore_data_new_bpe" |
|
|
|
rescore_file += "." |
|
rescore_bpe += "." |
|
|
|
write_reprocessed( |
|
gen_output.no_bpe_source, |
|
gen_output.no_bpe_hypo, |
|
gen_output.no_bpe_target, |
|
rescore_file + source_lang, |
|
rescore_file + target_lang, |
|
pre_gen + "/reference_file_no_bpe", |
|
bpe_symbol=None, |
|
) |
|
|
|
|
|
bpe_src_param = [ |
|
"-c", |
|
cur_lm_bpe_code, |
|
"--input", |
|
rescore_file + target_lang, |
|
"--output", |
|
rescore_bpe + target_lang, |
|
] |
|
subprocess.call( |
|
[ |
|
"python", |
|
os.path.join( |
|
os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py" |
|
), |
|
] |
|
+ bpe_src_param, |
|
shell=False, |
|
) |
|
|
|
|
|
|
|
|
|
preprocess_dir = preprocess_directory |
|
|
|
preprocess_lm_param = [ |
|
"--only-source", |
|
"--trainpref", |
|
rescore_bpe + target_lang, |
|
"--srcdict", |
|
cur_lm_dict, |
|
"--destdir", |
|
preprocess_dir, |
|
] |
|
preprocess_parser = options.get_preprocessing_parser() |
|
input_args = preprocess_parser.parse_args(preprocess_lm_param) |
|
preprocess.main(input_args) |
|
|
|
eval_lm_param = [ |
|
preprocess_dir, |
|
"--path", |
|
cur_language_model, |
|
"--output-word-probs", |
|
"--batch-size", |
|
str(batch_size), |
|
"--max-tokens", |
|
"1024", |
|
"--sample-break-mode", |
|
"eos", |
|
"--gen-subset", |
|
"train", |
|
] |
|
|
|
eval_lm_parser = options.get_eval_lm_parser() |
|
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) |
|
|
|
with open(lm_score_file, "w") as f: |
|
with redirect_stdout(f): |
|
eval_lm.main(input_args) |
|
|
|
|
|
def rescore_file_name( |
|
nbest_dir, |
|
prefix_len, |
|
scorer_name, |
|
lm_file=False, |
|
target_prefix_frac=None, |
|
source_prefix_frac=None, |
|
backwards=None, |
|
): |
|
if lm_file: |
|
score_file = nbest_dir + "/lm_score_translations_model_" + scorer_name + ".txt" |
|
else: |
|
score_file = nbest_dir + "/" + scorer_name + "_score_translations.txt" |
|
if backwards: |
|
if prefix_len is not None: |
|
score_file += "prefix_len" + str(prefix_len) |
|
elif target_prefix_frac is not None: |
|
score_file += "target_prefix_frac" + str(target_prefix_frac) |
|
else: |
|
if source_prefix_frac is not None: |
|
score_file += "source_prefix_frac" + str(source_prefix_frac) |
|
return score_file |
|
|