|
#!/usr/bin/env bash |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
base_url=www.openslr.org/resources/12 |
|
train_dir=train_960 |
|
|
|
if [ "$#" -ne 2 ]; then |
|
echo "Usage: $0 <download_dir> <out_dir>" |
|
echo "e.g.: $0 /tmp/librispeech_raw/ ~/data/librispeech_final" |
|
exit 1 |
|
fi |
|
|
|
download_dir=${1%/} |
|
out_dir=${2%/} |
|
|
|
fairseq_root=~/fairseq-py/ |
|
mkdir -p ${out_dir} |
|
cd ${out_dir} || exit |
|
|
|
nbpe=5000 |
|
bpemode=unigram |
|
|
|
if [ ! -d "$fairseq_root" ]; then |
|
echo "$0: Please set correct fairseq_root" |
|
exit 1 |
|
fi |
|
|
|
echo "Data Download" |
|
for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do |
|
url=$base_url/$part.tar.gz |
|
if ! wget -P $download_dir $url; then |
|
echo "$0: wget failed for $url" |
|
exit 1 |
|
fi |
|
if ! tar -C $download_dir -xvzf $download_dir/$part.tar.gz; then |
|
echo "$0: error un-tarring archive $download_dir/$part.tar.gz" |
|
exit 1 |
|
fi |
|
done |
|
|
|
echo "Merge all train packs into one" |
|
mkdir -p ${download_dir}/LibriSpeech/${train_dir}/ |
|
for part in train-clean-100 train-clean-360 train-other-500; do |
|
mv ${download_dir}/LibriSpeech/${part}/* $download_dir/LibriSpeech/${train_dir}/ |
|
done |
|
echo "Merge train text" |
|
find ${download_dir}/LibriSpeech/${train_dir}/ -name '*.txt' -exec cat {} \; >> ${download_dir}/LibriSpeech/${train_dir}/text |
|
|
|
|
|
find ${download_dir}/LibriSpeech/dev-clean/ ${download_dir}/LibriSpeech/dev-other/ -name '*.txt' -exec cat {} \; >> ${download_dir}/LibriSpeech/valid_text |
|
find ${download_dir}/LibriSpeech/test-clean/ -name '*.txt' -exec cat {} \; >> ${download_dir}/LibriSpeech/test-clean/text |
|
find ${download_dir}/LibriSpeech/test-other/ -name '*.txt' -exec cat {} \; >> ${download_dir}/LibriSpeech/test-other/text |
|
|
|
|
|
dict=data/lang_char/${train_dir}_${bpemode}${nbpe}_units.txt |
|
encoded=data/lang_char/${train_dir}_${bpemode}${nbpe}_encoded.txt |
|
fairseq_dict=data/lang_char/${train_dir}_${bpemode}${nbpe}_fairseq_dict.txt |
|
bpemodel=data/lang_char/${train_dir}_${bpemode}${nbpe} |
|
echo "dictionary: ${dict}" |
|
echo "Dictionary preparation" |
|
mkdir -p data/lang_char/ |
|
echo "<unk> 3" > ${dict} |
|
echo "</s> 2" >> ${dict} |
|
echo "<pad> 1" >> ${dict} |
|
cut -f 2- -d" " ${download_dir}/LibriSpeech/${train_dir}/text > data/lang_char/input.txt |
|
spm_train --input=data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000 --unk_id=3 --eos_id=2 --pad_id=1 --bos_id=-1 --character_coverage=1 |
|
spm_encode --model=${bpemodel}.model --output_format=piece < data/lang_char/input.txt > ${encoded} |
|
cat ${encoded} | tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+3}' >> ${dict} |
|
cat ${encoded} | tr ' ' '\n' | sort | uniq -c | awk '{print $2 " " $1}' > ${fairseq_dict} |
|
wc -l ${dict} |
|
|
|
echo "Prepare train and test jsons" |
|
for part in train_960 test-other test-clean; do |
|
python ${fairseq_root}/examples/speech_recognition/datasets/asr_prep_json.py --audio-dirs ${download_dir}/LibriSpeech/${part} --labels ${download_dir}/LibriSpeech/${part}/text --spm-model ${bpemodel}.model --audio-format flac --dictionary ${fairseq_dict} --output ${part}.json |
|
done |
|
|
|
mv train_960.json train.json |
|
|
|
echo "Prepare valid json" |
|
python ${fairseq_root}/examples/speech_recognition/datasets/asr_prep_json.py --audio-dirs ${download_dir}/LibriSpeech/dev-clean ${download_dir}/LibriSpeech/dev-other --labels ${download_dir}/LibriSpeech/valid_text --spm-model ${bpemodel}.model --audio-format flac --dictionary ${fairseq_dict} --output valid.json |
|
|
|
cp ${fairseq_dict} ./dict.txt |
|
cp ${bpemodel}.model ./spm.model |
|
|