UnIVAL / fairseq /examples /criss /save_encoder.py
mshukor
init
26fd00c
raw
history blame
7.47 kB
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate pre-processed data with a trained model.
"""
import numpy as np
import torch
from fairseq import checkpoint_utils, options, progress_bar, tasks, utils
from fairseq.sequence_generator import EnsembleModel
from fairseq.utils import safe_hasattr
def get_avg_pool(
models, sample, prefix_tokens, src_dict, remove_bpe, has_langtok=False
):
model = EnsembleModel(models)
# model.forward normally channels prev_output_tokens into the decoder
# separately, but SequenceGenerator directly calls model.encoder
encoder_input = {
k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
}
# compute the encoder output for each beam
encoder_outs = model.forward_encoder(encoder_input)
np_encoder_outs = encoder_outs[0].encoder_out.cpu().numpy().astype(np.float32)
encoder_mask = 1 - encoder_outs[0].encoder_padding_mask.cpu().numpy().astype(
np.float32
)
encoder_mask = np.expand_dims(encoder_mask.T, axis=2)
if has_langtok:
encoder_mask = encoder_mask[1:, :, :]
np_encoder_outs = np_encoder_outs[1, :, :]
masked_encoder_outs = encoder_mask * np_encoder_outs
avg_pool = (masked_encoder_outs / encoder_mask.sum(axis=0)).sum(axis=0)
return avg_pool
def main(args):
assert args.path is not None, "--path required for generation!"
assert (
not args.sampling or args.nbest == args.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
args.replace_unk is None or args.raw_text
), "--replace-unk requires a raw text dataset (--raw-text)"
args.beam = 1
utils.import_user_module(args)
if args.max_tokens is None:
args.max_tokens = 12000
print(args)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load dataset splits
task = tasks.setup_task(args)
task.load_dataset(args.gen_subset)
# Set dictionaries
try:
src_dict = getattr(task, "source_dictionary", None)
except NotImplementedError:
src_dict = None
tgt_dict = task.target_dictionary
# Load ensemble
print("| loading model(s) from {}".format(args.path))
models, _model_args = checkpoint_utils.load_model_ensemble(
args.path.split(":"),
arg_overrides=eval(args.model_overrides),
task=task,
)
# Optimize ensemble for generation
for model in models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
need_attn=args.print_alignment,
)
if args.fp16:
model.half()
if use_cuda:
model.cuda()
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(args.replace_unk)
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(args.gen_subset),
max_tokens=args.max_tokens,
max_positions=utils.resolve_max_positions(
task.max_positions(),
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=args.required_batch_size_multiple,
num_shards=args.num_shards,
shard_id=args.shard_id,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
num_sentences = 0
source_sentences = []
shard_id = 0
all_avg_pool = None
encoder_has_langtok = (
safe_hasattr(task.args, "encoder_langtok")
and task.args.encoder_langtok is not None
and safe_hasattr(task.args, "lang_tok_replacing_bos_eos")
and not task.args.lang_tok_replacing_bos_eos
)
with progress_bar.build_progress_bar(args, itr) as t:
for sample in t:
if sample is None:
print("Skipping None")
continue
sample = utils.move_to_cuda(sample) if use_cuda else sample
if "net_input" not in sample:
continue
prefix_tokens = None
if args.prefix_size > 0:
prefix_tokens = sample["target"][:, : args.prefix_size]
with torch.no_grad():
avg_pool = get_avg_pool(
models,
sample,
prefix_tokens,
src_dict,
args.post_process,
has_langtok=encoder_has_langtok,
)
if all_avg_pool is not None:
all_avg_pool = np.concatenate((all_avg_pool, avg_pool))
else:
all_avg_pool = avg_pool
if not isinstance(sample["id"], list):
sample_ids = sample["id"].tolist()
else:
sample_ids = sample["id"]
for i, sample_id in enumerate(sample_ids):
# Remove padding
src_tokens = utils.strip_pad(
sample["net_input"]["src_tokens"][i, :], tgt_dict.pad()
)
# Either retrieve the original sentences or regenerate them from tokens.
if align_dict is not None:
src_str = task.dataset(args.gen_subset).src.get_original_text(
sample_id
)
else:
if src_dict is not None:
src_str = src_dict.string(src_tokens, args.post_process)
else:
src_str = ""
if not args.quiet:
if src_dict is not None:
print("S-{}\t{}".format(sample_id, src_str))
source_sentences.append(f"{sample_id}\t{src_str}")
num_sentences += sample["nsentences"]
if all_avg_pool.shape[0] >= 1000000:
with open(
f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}",
"w",
) as avg_pool_file:
all_avg_pool.tofile(avg_pool_file)
with open(
f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}",
"w",
) as sentence_file:
sentence_file.writelines(f"{line}\n" for line in source_sentences)
all_avg_pool = None
source_sentences = []
shard_id += 1
if all_avg_pool is not None:
with open(
f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}", "w"
) as avg_pool_file:
all_avg_pool.tofile(avg_pool_file)
with open(
f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}", "w"
) as sentence_file:
sentence_file.writelines(f"{line}\n" for line in source_sentences)
return None
def cli_main():
parser = options.get_generation_parser()
parser.add_argument(
"--encoder-save-dir",
default="",
type=str,
metavar="N",
help="directory to save encoder outputs",
)
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == "__main__":
cli_main()