UnIVAL / fairseq /examples /fast_noisy_channel /noisy_channel_translation.py
mshukor
init
26fd00c
raw
history blame
6.71 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.tasks.translation import TranslationTask
from fairseq.tasks.language_modeling import LanguageModelingTask
from fairseq import checkpoint_utils
import argparse
from fairseq.tasks import register_task
import torch
@register_task("noisy_channel_translation")
class NoisyChannelTranslation(TranslationTask):
"""
Rescore the top k candidates from each beam using noisy channel modeling
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
TranslationTask.add_args(parser)
# fmt: off
parser.add_argument('--channel-model', metavar='FILE',
help='path to P(S|T) model. P(S|T) and P(T|S) must share source and target dictionaries.')
parser.add_argument('--combine-method', default='lm_only',
choices=['lm_only', 'noisy_channel'],
help="""method for combining direct and channel model scores.
lm_only: decode with P(T|S)P(T)
noisy_channel: decode with 1/t P(T|S) + 1/s(P(S|T)P(T))""")
parser.add_argument('--normalize-lm-scores-by-tgt-len', action='store_true', default=False,
help='normalize lm score by target length instead of source length')
parser.add_argument('--channel-scoring-type', default='log_norm', choices=['unnormalized', 'log_norm', 'k2_separate', 'src_vocab', 'src_vocab_batched'],
help="Normalize bw scores with log softmax or return bw scores without log softmax")
parser.add_argument('--top-k-vocab', default=0, type=int,
help='top k vocab IDs to use with `src_vocab` in channel model scoring')
parser.add_argument('--k2', default=50, type=int,
help='the top k2 candidates to rescore with the noisy channel model for each beam')
parser.add_argument('--ch-wt', default=1, type=float,
help='weight for the channel model')
parser.add_argument('--lm-model', metavar='FILE',
help='path to lm model file, to model P(T). P(T) must share the same vocab as the direct model on the target side')
parser.add_argument('--lm-data', metavar='FILE',
help='path to lm model training data for target language, used to properly load LM with correct dictionary')
parser.add_argument('--lm-wt', default=1, type=float,
help='the weight of the lm in joint decoding')
# fmt: on
def build_generator(
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None
):
if getattr(args, "score_reference", False):
raise NotImplementedError()
else:
from .noisy_channel_sequence_generator import NoisyChannelSequenceGenerator
use_cuda = torch.cuda.is_available() and not self.args.cpu
assert self.args.lm_model is not None, '--lm-model required for noisy channel generation!'
assert self.args.lm_data is not None, '--lm-data required for noisy channel generation to map between LM and bitext vocabs'
if self.args.channel_model is not None:
import copy
ch_args_task = copy.deepcopy(self.args)
tmp = ch_args_task.source_lang
ch_args_task.source_lang = ch_args_task.target_lang
ch_args_task.target_lang = tmp
ch_args_task._name = 'translation'
channel_task = TranslationTask.setup_task(ch_args_task)
arg_dict = {}
arg_dict['task'] = 'language_modeling'
arg_dict['sample_break_mode'] = 'eos'
arg_dict['data'] = self.args.lm_data
arg_dict['output_dictionary_size'] = -1
lm_args = argparse.Namespace(**arg_dict)
lm_task = LanguageModelingTask.setup_task(lm_args)
lm_dict = lm_task.output_dictionary
if self.args.channel_model is not None:
channel_models, _ = checkpoint_utils.load_model_ensemble(self.args.channel_model.split(':'), task=channel_task)
for model in channel_models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
need_attn=args.print_alignment,
)
if self.args.fp16:
model.half()
if use_cuda:
model.cuda()
else:
channel_models = None
lm_models, _ = checkpoint_utils.load_model_ensemble(self.args.lm_model.split(':'), task=lm_task)
for model in lm_models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
need_attn=args.print_alignment,
)
if self.args.fp16:
model.half()
if use_cuda:
model.cuda()
return NoisyChannelSequenceGenerator(
combine_method=self.args.combine_method,
tgt_dict=self.target_dictionary,
src_dict=self.source_dictionary,
beam_size=getattr(args, 'beam', 5),
max_len_a=getattr(args, 'max_len_a', 0),
max_len_b=getattr(args, 'max_len_b', 200),
min_len=getattr(args, 'min_len', 1),
len_penalty=getattr(args, 'lenpen', 1),
unk_penalty=getattr(args, 'unkpen', 0),
temperature=getattr(args, 'temperature', 1.),
match_source_len=getattr(args, 'match_source_len', False),
no_repeat_ngram_size=getattr(args, 'no_repeat_ngram_size', 0),
normalize_scores=(not getattr(args, 'unnormalized', False)),
channel_models=channel_models,
k2=getattr(self.args, 'k2', 50),
ch_weight=getattr(self.args, 'ch_wt', 1),
channel_scoring_type=self.args.channel_scoring_type,
top_k_vocab=self.args.top_k_vocab,
lm_models=lm_models,
lm_dict=lm_dict,
lm_weight=getattr(self.args, 'lm_wt', 1),
normalize_lm_scores_by_tgt_len=getattr(self.args, 'normalize_lm_scores_by_tgt_len', False),
)