|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
|
|
import fairseq |
|
import soundfile as sf |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from feature_utils import get_path_iterator, dump_feature |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S", |
|
level=os.environ.get("LOGLEVEL", "INFO").upper(), |
|
stream=sys.stdout, |
|
) |
|
logger = logging.getLogger("dump_w2v2_feature") |
|
|
|
|
|
class Wav2Vec2FeatureReader(object): |
|
def __init__(self, ckpt_path, layer, max_chunk=1600000): |
|
( |
|
model, |
|
cfg, |
|
task, |
|
) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path]) |
|
self.model = model[0].eval().cuda() |
|
self.task = task |
|
self.layer = layer |
|
self.max_chunk = max_chunk |
|
logger.info(f"TASK CONFIG:\n{self.task.cfg}") |
|
logger.info(f" max_chunk = {self.max_chunk}") |
|
logger.info(f" model:\n{self.model}") |
|
|
|
def read_audio(self, path, ref_len=None): |
|
wav, sr = sf.read(path) |
|
assert sr == self.task.cfg.sample_rate, sr |
|
if wav.ndim == 2: |
|
wav = wav.mean(-1) |
|
assert wav.ndim == 1, wav.ndim |
|
if ref_len is not None and abs(ref_len - len(wav)) > 160: |
|
logging.warning(f"ref {ref_len} != read {len(wav)} ({path})") |
|
return wav |
|
|
|
def get_feats(self, path, ref_len=None): |
|
x = self.read_audio(path, ref_len) |
|
with torch.no_grad(): |
|
x = torch.from_numpy(x).float().cuda() |
|
if self.task.cfg.normalize: |
|
x = F.layer_norm(x, x.shape) |
|
x = x.view(1, -1) |
|
|
|
feat = [] |
|
for start in range(0, x.size(1), self.max_chunk): |
|
x_chunk = x[:, start: start + self.max_chunk] |
|
res = self.model.extract_features( |
|
source=x_chunk, |
|
padding_mask=None, |
|
mask=False, |
|
layer=self.layer - 1, |
|
) |
|
feat_chunk = res["x"] |
|
feat.append(feat_chunk) |
|
return torch.cat(feat, 1).squeeze(0) |
|
|
|
|
|
def main(tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk): |
|
reader = Wav2Vec2FeatureReader(ckpt_path, layer, max_chunk) |
|
generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank) |
|
dump_feature(reader, generator, num, split, nshard, rank, feat_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("tsv_dir") |
|
parser.add_argument("split") |
|
parser.add_argument("ckpt_path") |
|
parser.add_argument("layer", type=int) |
|
parser.add_argument("nshard", type=int) |
|
parser.add_argument("rank", type=int) |
|
parser.add_argument("feat_dir") |
|
parser.add_argument("--max_chunk", type=int, default=1600000) |
|
args = parser.parse_args() |
|
logger.info(args) |
|
|
|
main(**vars(args)) |
|
|