|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
def calc_mean_invstddev(feature): |
|
if len(feature.size()) != 2: |
|
raise ValueError("We expect the input feature to be 2-D tensor") |
|
mean = feature.mean(0) |
|
var = feature.var(0) |
|
|
|
eps = 1e-8 |
|
if (var < eps).any(): |
|
return mean, 1.0 / (torch.sqrt(var) + eps) |
|
return mean, 1.0 / torch.sqrt(var) |
|
|
|
|
|
def apply_mv_norm(features): |
|
|
|
|
|
if features.size(0) < 2: |
|
return features |
|
mean, invstddev = calc_mean_invstddev(features) |
|
res = (features - mean) * invstddev |
|
return res |
|
|
|
|
|
def lengths_to_encoder_padding_mask(lengths, batch_first=False): |
|
""" |
|
convert lengths (a 1-D Long/Int tensor) to 2-D binary tensor |
|
|
|
Args: |
|
lengths: a (B, )-shaped tensor |
|
|
|
Return: |
|
max_length: maximum length of B sequences |
|
encoder_padding_mask: a (max_length, B) binary mask, where |
|
[t, b] = 0 for t < lengths[b] and 1 otherwise |
|
|
|
TODO: |
|
kernelize this function if benchmarking shows this function is slow |
|
""" |
|
max_lengths = torch.max(lengths).item() |
|
bsz = lengths.size(0) |
|
encoder_padding_mask = torch.arange( |
|
max_lengths |
|
).to( |
|
lengths.device |
|
).view( |
|
1, max_lengths |
|
).expand( |
|
bsz, -1 |
|
) >= lengths.view( |
|
bsz, 1 |
|
).expand( |
|
-1, max_lengths |
|
) |
|
if not batch_first: |
|
return encoder_padding_mask.t(), max_lengths |
|
else: |
|
return encoder_padding_mask, max_lengths |
|
|
|
|
|
def encoder_padding_mask_to_lengths( |
|
encoder_padding_mask, max_lengths, batch_size, device |
|
): |
|
""" |
|
convert encoder_padding_mask (2-D binary tensor) to a 1-D tensor |
|
|
|
Conventionally, encoder output contains a encoder_padding_mask, which is |
|
a 2-D mask in a shape (T, B), whose (t, b) element indicate whether |
|
encoder_out[t, b] is a valid output (=0) or not (=1). Occasionally, we |
|
need to convert this mask tensor to a 1-D tensor in shape (B, ), where |
|
[b] denotes the valid length of b-th sequence |
|
|
|
Args: |
|
encoder_padding_mask: a (T, B)-shaped binary tensor or None; if None, |
|
indicating all are valid |
|
Return: |
|
seq_lengths: a (B,)-shaped tensor, where its (b, )-th element is the |
|
number of valid elements of b-th sequence |
|
|
|
max_lengths: maximum length of all sequence, if encoder_padding_mask is |
|
not None, max_lengths must equal to encoder_padding_mask.size(0) |
|
|
|
batch_size: batch size; if encoder_padding_mask is |
|
not None, max_lengths must equal to encoder_padding_mask.size(1) |
|
|
|
device: which device to put the result on |
|
""" |
|
if encoder_padding_mask is None: |
|
return torch.Tensor([max_lengths] * batch_size).to(torch.int32).to(device) |
|
|
|
assert encoder_padding_mask.size(0) == max_lengths, "max_lengths does not match" |
|
assert encoder_padding_mask.size(1) == batch_size, "batch_size does not match" |
|
|
|
return max_lengths - torch.sum(encoder_padding_mask, dim=0) |
|
|