UnIVAL / criterions /label_smoothed_cross_entropy_scst.py
mshukor
init
26fd00c
raw
history blame
21.8 kB
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
import math
from dataclasses import dataclass, field
from typing import Optional
import torch
import torch.nn.functional as F
import numpy as np
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from omegaconf import II
from mapcalc import calculate_map, calculate_map_range
@dataclass
class AdjustLabelSmoothedCrossEntropySCSTCriterionConfig(FairseqDataclass):
label_smoothing: float = field(
default=0.0,
metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
)
report_accuracy: bool = field(
default=False,
metadata={"help": "report accuracy metric"},
)
ignore_prefix_size: int = field(
default=0,
metadata={"help": "Ignore first N tokens"},
)
ignore_eos: bool = field(
default=False,
metadata={"help": "Ignore eos token"},
)
sentence_avg: bool = II("optimization.sentence_avg")
drop_worst_ratio: float = field(
default=0.0,
metadata={"help": "ratio for discarding bad samples"},
)
drop_worst_after: int = field(
default=0,
metadata={"help": "steps for discarding bad samples"},
)
use_rdrop: bool = field(
default=False, metadata={"help": "use R-Drop"}
)
reg_alpha: float = field(
default=1.0, metadata={"help": "weight for R-Drop"}
)
sample_patch_num: int = field(
default=196, metadata={"help": "sample patches for v1"}
)
constraint_range: Optional[str] = field(
default=None,
metadata={"help": "constraint range"}
)
acc_thresh: Optional[float] = field(
default=None, metadata={"help": "acc thresh for refcoco"}
)
metric: Optional[str] = field(
default='acc',
metadata={"help": "metric"}
)
max_area_size: Optional[float] = field(
default=None, metadata={"help": "max_area_size"}
)
min_area_size: Optional[float] = field(
default=None, metadata={"help": "min_area_size"}
)
logprob: Optional[bool] = field(
default=False, metadata={"help": "maximise log prob"}
)
pos_reward: Optional[float] = field(
default=None, metadata={"help": "pos_reward"}
)
neg_reward: Optional[float] = field(
default=None, metadata={"help": "neg_reward"}
)
reinforce: Optional[bool] = field(
default=False, metadata={"help": "reinforce"}
)
lambda_reinforce: Optional[float] = field(
default=0, metadata={"help": "lambda_reinforce"}
)
def construct_rdrop_sample(x):
if isinstance(x, dict):
for key in x:
x[key] = construct_rdrop_sample(x[key])
return x
elif isinstance(x, torch.Tensor):
return x.repeat(2, *([1] * (x.dim()-1)))
elif isinstance(x, int):
return x * 2
elif isinstance(x, np.ndarray):
return x.repeat(2)
else:
raise NotImplementedError
def kl_loss(p, q):
p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
loss = (p_loss + q_loss) / 2
return loss
def label_smoothed_nll_loss(
lprobs, target, epsilon, update_num, reduce=True,
drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
constraint_masks=None, constraint_start=None, constraint_end=None
):
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
if constraint_masks is not None:
smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
elif constraint_start is not None and constraint_end is not None:
constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
else:
smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
eps_i = epsilon / (lprobs.size(-1) - 1)
loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
if drop_worst_ratio > 0 and update_num > drop_worst_after:
if use_rdrop:
true_batch_size = loss.size(0) // 2
_, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
else:
loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
nll_loss = nll_loss[indices]
lprobs = lprobs[indices]
ntokens = loss.numel()
nll_loss = nll_loss.sum()
# loss = loss.sum()
if use_rdrop:
true_batch_size = lprobs.size(0) // 2
p = lprobs[:true_batch_size]
q = lprobs[true_batch_size:]
if constraint_start is not None and constraint_end is not None:
constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
p = p[:, constraint_range]
q = q[:, constraint_range]
loss = loss + ((kl_loss(p, q) * reg_alpha)/loss.shape[0])
return loss, nll_loss, ntokens
@register_criterion(
"adjust_label_smoothed_cross_entropy_scst", dataclass=AdjustLabelSmoothedCrossEntropySCSTCriterionConfig
)
class AdjustLabelSmoothedCrossEntropySCSTCriterion(FairseqCriterion):
def __init__(
self,
task,
sentence_avg,
label_smoothing,
ignore_prefix_size=0,
ignore_eos=False,
report_accuracy=False,
drop_worst_ratio=0,
drop_worst_after=0,
use_rdrop=False,
reg_alpha=1.0,
sample_patch_num=196,
constraint_range=None,
acc_thresh=None,
metric='acc',
max_area_size=None,
min_area_size=None,
logprob=False,
pos_reward=None,
neg_reward=None,
reinforce=False,
lambda_reinforce=0,
):
super().__init__(task)
self.sentence_avg = sentence_avg
self.eps = label_smoothing
self.ignore_prefix_size = ignore_prefix_size
self.ignore_eos = ignore_eos
self.report_accuracy = report_accuracy
self.drop_worst_ratio = drop_worst_ratio
self.drop_worst_after = drop_worst_after
self.use_rdrop = use_rdrop
self.reg_alpha = reg_alpha
self.sample_patch_num = sample_patch_num
self.constraint_start = None
self.constraint_end = None
if constraint_range is not None:
constraint_start, constraint_end = constraint_range.split(',')
self.constraint_start = int(constraint_start)
self.constraint_end = int(constraint_end)
self.acc_thresh = acc_thresh
self.metric = metric
self.min_area_size = min_area_size
self.max_area_size = max_area_size
self.logprob = logprob
self.pos_reward = pos_reward
self.neg_reward = neg_reward
self.reinforce = reinforce
self.lambda_reinforce = lambda_reinforce
def get_generator_out(self, model, sample):
model.eval()
with torch.no_grad():
self.task.scst_generator.model.eval()
gen_out = self.task.scst_generator.generate([model], sample)
hyps, refs = [], []
for i in range(len(gen_out)):
hyps.append(gen_out[i][0]["tokens"][:-1] - len(self.task.src_dict) + self.task.cfg.num_bins)
refs.append(sample["target"][i][:-1] - len(self.task.src_dict) + self.task.cfg.num_bins)
return torch.stack(hyps, dim=0), torch.stack(refs, dim=0)
def _calculate_map_score(self, hyps, refs, thresh=0.5):
ground_truth = {
'boxes': refs.cpu().numpy().tolist(),
'labels': [1 for i in range(refs.shape[0])]
}
result_dict = {
'boxes': hyps.cpu().numpy().tolist(),
'labels': [1 for i in range(hyps.shape[0])],
}
score = calculate_map(ground_truth, result_dict, thresh)
score = torch.tensor(score).unsqueeze(0).repeat(refs.shape[0]).to(hyps.device)
return score
def _calculate_ap_score(self, hyps, refs, thresh=0.5, min_area_size=None, max_area_size=None):
interacts = torch.cat(
[torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]),
torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])],
dim=1
)
area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) ## x1, y1, x2, y2, x1 < x2
area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
interacts_w = interacts[:, 2] - interacts[:, 0]
interacts_h = interacts[:, 3] - interacts[:, 1]
area_interacts = interacts_w * interacts_h
ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6)
if max_area_size is not None and min_area_size is not None:
ious = ious * (torch.logical_or(area_targets < max_area_size, area_targets > min_area_size).float())
elif min_area_size is not None:
ious = ious * (area_targets > min_area_size).float()
elif max_area_size is not None:
ious = ious * (area_targets < max_area_size).float()
if thresh is None:
return ious
else:
return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float()
def reward_step(self, sample, model):
hyps, refs = self.get_generator_out(model, sample)
hyps = hyps / (self.task.cfg.num_bins - 1) * self.task.cfg.max_image_size
refs = refs / (self.task.cfg.num_bins - 1) * self.task.cfg.max_image_size
hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
refs[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
refs[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
# scores = self._calculate_ap_score(hyps, refs)
if self.metric == 'acc':
scores = self._calculate_ap_score(hyps, sample['region_coords'].float(), thresh=self.acc_thresh,
min_area_size=self.min_area_size, max_area_size=self.max_area_size)
elif self.metric == 'map':
scores = self._calculate_map_score(hyps, sample['region_coords'].float(), thresh=self.acc_thresh)
else:
raise NotImplemented
# logging_output["_score_sum"] = scores.sum().item()
# logging_output["_score_cnt"] = scores.size(0)
if self.pos_reward:
scores = torch.where(scores > 0, self.pos_reward, scores)
if self.neg_reward:
scores = torch.where(scores == 0, self.neg_reward, scores)
return scores
def forward(self, model, sample, update_num=0, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
if isinstance(sample, list):
if self.sample_patch_num > 0:
sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
# change to support len(samples) > 2
loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
sample_size = 1
logging_output = {
"loss": loss.data,
"loss_v1": loss_v1.data,
"loss_v2": loss_v2.data,
"nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
"ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
"nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
"sample_size": 1,
"sample_size_v1": sample_size_v1,
"sample_size_v2": sample_size_v2,
"reward": (logging_output_v1["reward"] + logging_output_v2["reward"])/2,
}
return loss, sample_size, logging_output
if self.use_rdrop:
construct_rdrop_sample(sample)
### scst
reward = self.reward_step(sample, model) # shape = bs
model.train()
net_output = model(**sample["net_input"])
loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce, reward=reward)
# loss = loss*reward
loss = loss.sum()
sample_size = (
sample["target"].size(0) if self.sentence_avg else ntokens
)
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["nsentences"],
"sample_size": sample_size,
"reward": reward.mean(),
}
if self.report_accuracy:
n_correct, total = self.compute_accuracy(model, net_output, sample)
logging_output["n_correct"] = utils.item(n_correct.data)
logging_output["total"] = utils.item(total.data)
return loss, sample_size, logging_output
def get_lprobs_and_target(self, model, net_output, sample, reward=None):
conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
constraint_masks = None
if "constraint_masks" in sample and sample["constraint_masks"] is not None:
constraint_masks = sample["constraint_masks"]
net_output[0].masked_fill_(~constraint_masks, -math.inf)
if self.constraint_start is not None and self.constraint_end is not None:
net_output[0][:, :, 4:self.constraint_start] = -math.inf
net_output[0][:, :, self.constraint_end:] = -math.inf
lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
target = model.get_targets(sample, net_output)
if self.ignore_prefix_size > 0:
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
target = target[:, self.ignore_prefix_size :].contiguous()
if constraint_masks is not None:
constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
if self.ignore_eos:
bsz, seq_len, embed_dim = lprobs.size()
eos_indices = target.eq(self.task.tgt_dict.eos())
lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
target = target[~eos_indices].reshape(bsz, seq_len-1)
if constraint_masks is not None:
constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
if constraint_masks is not None:
constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
if reward is not None:
reward = reward.unsqueeze(1).unsqueeze(1)
lprobs = lprobs*reward
return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks
def compute_loss(self, model, net_output, sample, update_num, reduce=True, reward=None):
lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample, reward=reward)
if constraint_masks is not None:
constraint_masks = constraint_masks[target != self.padding_idx]
# print(target.shape, self.padding_idx, lprobs.shape, target, lprobs)
lprobs = lprobs[target != self.padding_idx]
target = target[target != self.padding_idx]
loss, nll_loss, ntokens = label_smoothed_nll_loss(
lprobs,
target,
self.eps,
update_num,
reduce=reduce,
drop_worst_ratio=self.drop_worst_ratio,
drop_worst_after=self.drop_worst_after,
use_rdrop=self.use_rdrop,
reg_alpha=self.reg_alpha,
constraint_masks=constraint_masks,
constraint_start=self.constraint_start,
constraint_end=self.constraint_end
)
if self.logprob and self.reinforce:
# print(-lprobs.max(dim=-1)[0].squeeze(-1).sum(), loss)
if self.lambda_reinforce > 0:
lprobs_, target_, constraint_masks_ = self.get_lprobs_and_target(model, net_output, sample, reward=None)
loss_, _, ntokens = label_smoothed_nll_loss(
lprobs_,
target_,
self.eps,
update_num,
reduce=reduce,
drop_worst_ratio=self.drop_worst_ratio,
drop_worst_after=self.drop_worst_after,
use_rdrop=self.use_rdrop,
reg_alpha=self.reg_alpha,
constraint_masks=constraint_masks_,
constraint_start=self.constraint_start,
constraint_end=self.constraint_end
)
# print(-lprobs.max(dim=-1)[0].squeeze(-1).sum(), loss_)
# loss = -lprobs.max(dim=-1)[0].squeeze(-1).sum()*self.lambda_reinforce + loss_
loss = loss*self.lambda_reinforce + loss_ # only supervised with more weights via reward
else:
loss = -lprobs.max(dim=-1)[0].squeeze(-1).sum()
elif self.logprob:
loss = nll_loss
return loss, nll_loss, ntokens
def compute_accuracy(self, model, net_output, sample):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
mask = target.ne(self.padding_idx)
n_correct = torch.sum(
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
)
total = torch.sum(mask)
return n_correct, total
@classmethod
def reduce_metrics(cls, logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)
reward = sum(log.get("reward", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size, sample_size, round=3
)
metrics.log_scalar(
"loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
)
metrics.log_scalar(
"loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
)
metrics.log_scalar(
"nll_loss", nll_loss_sum / sample_size, ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
metrics.log_scalar(
"ntokens", ntokens, 1, round=3
)
metrics.log_scalar(
"nsentences", nsentences, 1, round=3
)
metrics.log_scalar(
"sample_size", sample_size, 1, round=3
)
metrics.log_scalar(
"sample_size_v1", sample_size_v1, 1, round=3
)
metrics.log_scalar(
"sample_size_v2", sample_size_v2, 1, round=3
)
metrics.log_scalar(
"reward", reward / sample_size, sample_size, round=3
)
total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
if total > 0:
metrics.log_scalar("total", total)
n_correct = utils.item(
sum(log.get("n_correct", 0) for log in logging_outputs)
)
metrics.log_scalar("n_correct", n_correct)
metrics.log_derived(
"accuracy",
lambda meters: round(
meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
)
if meters["total"].sum > 0
else float("nan"),
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True