UnIVAL / data /mm_data /video_caption_dataset.py
mshukor
init
26fd00c
raw
history blame
7.81 kB
# Modified from OFA code.
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
import logging
import warnings
import string
import numpy as np
import torch
from torchvision import transforms
from PIL import Image, ImageFile
from data import data_utils
from data.ofa_dataset import OFADataset
from data.video_utils import VIDEO_READER_FUNCS
import os
import random
ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
def collate(samples, pad_idx, eos_idx):
if len(samples) == 0:
return {}
def merge(key):
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx=eos_idx,
)
id = np.array([s["id"] for s in samples])
src_tokens = merge("source")
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
patch_videos = torch.stack([sample['patch_video'] for sample in samples], dim=0)
patch_types = torch.cat([sample['patch_type'] for sample in samples])
prev_output_tokens = None
target = None
if samples[0].get("target", None) is not None:
target = merge("target")
tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
ntokens = tgt_lengths.sum().item()
if samples[0].get("prev_output_tokens", None) is not None:
prev_output_tokens = merge("prev_output_tokens")
else:
ntokens = src_lengths.sum().item()
batch = {
"id": id,
"nsentences": len(samples),
"ntokens": ntokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"patch_images": patch_images,
"patch_masks": patch_masks,
"prev_output_tokens": prev_output_tokens,
"patch_videos": patch_videos,
"patch_types": patch_types,
},
"target": target,
}
return batch
class CaptionDataset(OFADataset):
def __init__(
self,
split,
dataset,
bpe,
src_dict,
tgt_dict=None,
max_src_length=128,
max_tgt_length=30,
patch_image_size=224,
imagenet_default_mean_and_std=False,
scst=False,
image_dir='/gpfsscratch/rech/dyf/ugz83ue/data',
patch_frame_size=224,
num_frames=4,
sample_type='rand',
use_dataaug=False,
):
super().__init__(split, dataset, bpe, src_dict, tgt_dict)
self.max_src_length = max_src_length
self.max_tgt_length = max_tgt_length
self.patch_image_size = patch_image_size
self.scst = scst
self.image_dir = image_dir
self.transtab = str.maketrans({key: None for key in string.punctuation})
if imagenet_default_mean_and_std:
mean = IMAGENET_DEFAULT_MEAN
std = IMAGENET_DEFAULT_STD
else:
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
self.split = split
type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
if self.split != 'train' or not use_dataaug:
self.patch_video_resize_transform = transforms.Compose([
transforms.CenterCrop(patch_frame_size),
type_transform,
transforms.Normalize(mean=mean, std=std),
])
logger.info("val split, do not use random augmentation.")
else:
aug_transform = transforms.RandAugment()
self.patch_video_resize_transform = transforms.Compose(
[
aug_transform,
transforms.RandomResizedCrop(
patch_frame_size,
scale=(0.5, 1.0),
interpolation=transforms.InterpolationMode.BICUBIC,
),
transforms.RandomHorizontalFlip(),
type_transform,
transforms.Normalize(mean=mean, std=std),
]
)
logger.info("train split, use random augmentation.")
# video
self.num_frames = num_frames
self.sample_type = sample_type
self.video_reader = VIDEO_READER_FUNCS['decord']
self.max_num_frames = num_frames
if type(bpe).__name__ == 'GPT2BPE':
self.prompt = " what does the video describe?"
else:
raise NotImplemented
self.num_tries = 4
def __getitem__(self, index, tries=0, other_dataset=None):
uniq_id, image, caption = self.dataset[index]
# video
image_path = os.path.join(self.image_dir, image)
data_path = image_path
max_num_frames = self.max_num_frames
try:
frames, frame_indices, video_duration = self.video_reader(
data_path, self.num_frames, self.sample_type, max_num_frames=max_num_frames
)
except Exception as e:
new_index = random.randint(0, len(self) - 1)
logger.warning(
f"Caught exception {e} when loading video {data_path}, "
f"randomly sample a new video as replacement"
)
if tries < self.num_tries:
return self.__getitem__(new_index, tries=tries+1, other_dataset=other_dataset)
else:
print("Videos are too corrupted, try increase the num_tries")
raise
patch_video = self.patch_video_resize_transform(frames)
patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)
patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
patch_type = torch.tensor([1])
patch_mask = torch.tensor([True])
if self.split == 'train' and not self.scst:
caption = caption.translate(self.transtab).strip()
caption_token_list = caption.strip().split()
tgt_caption = ' '.join(caption_token_list[:self.max_tgt_length])
else:
caption = ' '.join(caption.strip().split())
caption_list = [cap.translate(self.transtab).strip() for cap in caption.strip().split('&&')]
tgt_caption = '&&'.join(caption_list)
src_item = self.encode_text(self.prompt)
tgt_item = self.encode_text(" {}".format(tgt_caption))
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, tgt_item])
example = {
"id": uniq_id,
"source": src_item,
"patch_image": patch_image,
"patch_mask": patch_mask,
"target": target_item,
"prev_output_tokens": prev_output_item,
"patch_type": patch_type,
"patch_video": patch_video,
}
return example
def collater(self, samples, pad_to_length=None):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch containing the data of the task
"""
return collate(samples, pad_idx=self.pad, eos_idx=self.eos)