|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import warnings |
|
import string |
|
|
|
import numpy as np |
|
import torch |
|
from torchvision import transforms |
|
|
|
from PIL import Image, ImageFile |
|
|
|
from data import data_utils |
|
from data.ofa_dataset import OFADataset |
|
|
|
from data.video_utils import VIDEO_READER_FUNCS |
|
|
|
import os |
|
import random |
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = True |
|
ImageFile.MAX_IMAGE_PIXELS = None |
|
Image.MAX_IMAGE_PIXELS = None |
|
|
|
logger = logging.getLogger(__name__) |
|
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning) |
|
|
|
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
def collate(samples, pad_idx, eos_idx): |
|
if len(samples) == 0: |
|
return {} |
|
|
|
def merge(key): |
|
return data_utils.collate_tokens( |
|
[s[key] for s in samples], |
|
pad_idx, |
|
eos_idx=eos_idx, |
|
) |
|
|
|
id = np.array([s["id"] for s in samples]) |
|
src_tokens = merge("source") |
|
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples]) |
|
|
|
patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0) |
|
patch_masks = torch.cat([sample['patch_mask'] for sample in samples]) |
|
|
|
patch_videos = torch.stack([sample['patch_video'] for sample in samples], dim=0) |
|
patch_types = torch.cat([sample['patch_type'] for sample in samples]) |
|
|
|
prev_output_tokens = None |
|
target = None |
|
if samples[0].get("target", None) is not None: |
|
target = merge("target") |
|
tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples]) |
|
ntokens = tgt_lengths.sum().item() |
|
|
|
if samples[0].get("prev_output_tokens", None) is not None: |
|
prev_output_tokens = merge("prev_output_tokens") |
|
else: |
|
ntokens = src_lengths.sum().item() |
|
|
|
batch = { |
|
"id": id, |
|
"nsentences": len(samples), |
|
"ntokens": ntokens, |
|
"net_input": { |
|
"src_tokens": src_tokens, |
|
"src_lengths": src_lengths, |
|
"patch_images": patch_images, |
|
"patch_masks": patch_masks, |
|
"prev_output_tokens": prev_output_tokens, |
|
"patch_videos": patch_videos, |
|
"patch_types": patch_types, |
|
}, |
|
"target": target, |
|
} |
|
|
|
return batch |
|
|
|
|
|
class CaptionDataset(OFADataset): |
|
def __init__( |
|
self, |
|
split, |
|
dataset, |
|
bpe, |
|
src_dict, |
|
tgt_dict=None, |
|
max_src_length=128, |
|
max_tgt_length=30, |
|
patch_image_size=224, |
|
imagenet_default_mean_and_std=False, |
|
scst=False, |
|
image_dir='/gpfsscratch/rech/dyf/ugz83ue/data', |
|
patch_frame_size=224, |
|
num_frames=4, |
|
sample_type='rand', |
|
use_dataaug=False, |
|
): |
|
super().__init__(split, dataset, bpe, src_dict, tgt_dict) |
|
self.max_src_length = max_src_length |
|
self.max_tgt_length = max_tgt_length |
|
self.patch_image_size = patch_image_size |
|
self.scst = scst |
|
|
|
self.image_dir = image_dir |
|
|
|
self.transtab = str.maketrans({key: None for key in string.punctuation}) |
|
|
|
if imagenet_default_mean_and_std: |
|
mean = IMAGENET_DEFAULT_MEAN |
|
std = IMAGENET_DEFAULT_STD |
|
else: |
|
mean = [0.5, 0.5, 0.5] |
|
std = [0.5, 0.5, 0.5] |
|
|
|
|
|
|
|
self.split = split |
|
type_transform = transforms.Lambda(lambda x: x.float().div(255.0)) |
|
if self.split != 'train' or not use_dataaug: |
|
self.patch_video_resize_transform = transforms.Compose([ |
|
transforms.CenterCrop(patch_frame_size), |
|
type_transform, |
|
transforms.Normalize(mean=mean, std=std), |
|
]) |
|
logger.info("val split, do not use random augmentation.") |
|
else: |
|
aug_transform = transforms.RandAugment() |
|
self.patch_video_resize_transform = transforms.Compose( |
|
[ |
|
aug_transform, |
|
transforms.RandomResizedCrop( |
|
patch_frame_size, |
|
scale=(0.5, 1.0), |
|
interpolation=transforms.InterpolationMode.BICUBIC, |
|
), |
|
transforms.RandomHorizontalFlip(), |
|
type_transform, |
|
transforms.Normalize(mean=mean, std=std), |
|
] |
|
) |
|
|
|
|
|
logger.info("train split, use random augmentation.") |
|
|
|
|
|
|
|
self.num_frames = num_frames |
|
self.sample_type = sample_type |
|
self.video_reader = VIDEO_READER_FUNCS['decord'] |
|
self.max_num_frames = num_frames |
|
if type(bpe).__name__ == 'GPT2BPE': |
|
self.prompt = " what does the video describe?" |
|
else: |
|
raise NotImplemented |
|
|
|
self.num_tries = 4 |
|
|
|
def __getitem__(self, index, tries=0, other_dataset=None): |
|
uniq_id, image, caption = self.dataset[index] |
|
|
|
|
|
|
|
image_path = os.path.join(self.image_dir, image) |
|
data_path = image_path |
|
|
|
max_num_frames = self.max_num_frames |
|
|
|
|
|
try: |
|
|
|
frames, frame_indices, video_duration = self.video_reader( |
|
data_path, self.num_frames, self.sample_type, max_num_frames=max_num_frames |
|
) |
|
|
|
|
|
except Exception as e: |
|
new_index = random.randint(0, len(self) - 1) |
|
logger.warning( |
|
f"Caught exception {e} when loading video {data_path}, " |
|
f"randomly sample a new video as replacement" |
|
) |
|
if tries < self.num_tries: |
|
return self.__getitem__(new_index, tries=tries+1, other_dataset=other_dataset) |
|
else: |
|
print("Videos are too corrupted, try increase the num_tries") |
|
raise |
|
|
|
|
|
|
|
|
|
|
|
patch_video = self.patch_video_resize_transform(frames) |
|
patch_video = patch_video.permute(1, 0, 2, 3) |
|
|
|
|
|
patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size)) |
|
patch_type = torch.tensor([1]) |
|
|
|
|
|
|
|
|
|
patch_mask = torch.tensor([True]) |
|
|
|
if self.split == 'train' and not self.scst: |
|
caption = caption.translate(self.transtab).strip() |
|
caption_token_list = caption.strip().split() |
|
tgt_caption = ' '.join(caption_token_list[:self.max_tgt_length]) |
|
else: |
|
caption = ' '.join(caption.strip().split()) |
|
caption_list = [cap.translate(self.transtab).strip() for cap in caption.strip().split('&&')] |
|
tgt_caption = '&&'.join(caption_list) |
|
src_item = self.encode_text(self.prompt) |
|
tgt_item = self.encode_text(" {}".format(tgt_caption)) |
|
|
|
src_item = torch.cat([self.bos_item, src_item, self.eos_item]) |
|
target_item = torch.cat([tgt_item, self.eos_item]) |
|
prev_output_item = torch.cat([self.bos_item, tgt_item]) |
|
|
|
example = { |
|
"id": uniq_id, |
|
"source": src_item, |
|
"patch_image": patch_image, |
|
"patch_mask": patch_mask, |
|
"target": target_item, |
|
"prev_output_tokens": prev_output_item, |
|
"patch_type": patch_type, |
|
"patch_video": patch_video, |
|
} |
|
return example |
|
|
|
def collater(self, samples, pad_to_length=None): |
|
"""Merge a list of samples to form a mini-batch. |
|
Args: |
|
samples (List[dict]): samples to collate |
|
Returns: |
|
dict: a mini-batch containing the data of the task |
|
""" |
|
return collate(samples, pad_idx=self.pad, eos_idx=self.eos) |
|
|