UnIVAL / run_scripts /caption /coco_eval.py
mshukor
init
26fd00c
raw
history blame
2.83 kB
import json
import sys
import os.path as op
from pycocotools.coco import COCO
from pycocoevalcap.eval import COCOEvalCap
sys.path.append("/lus/home/NAT/gda2204/mshukor/code/ofa_ours")
from utils.cider.pyciderevalcap.ciderD.ciderD import CiderD
def evaluate_on_coco_caption(res_file, label_file, outfile=None, eval_cider_cached_tokens=None):
"""
res_file: txt file, each row is [image_key, json format list of captions].
Each caption is a dict, with fields "caption", "conf".
label_file: JSON file of ground truth captions in COCO format.
"""
# ##############################
# print("eval with CidderD scorer...")
# eval_cider_cached_tokens = "/lus/scratch/NAT/gda2204/SHARED/data/ofa/video_data/caption_data/cider_cached_tokens/msrvtt-test3k-words.p"
# CiderD_scorer = CiderD(df=eval_cider_cached_tokens)
# gts = json.load(open(label_file))['annotations']
# res_ =json.load(open(res_file))
# print(len(res_), len(gts))
# # print(res_)
# gts_ = {}
# for i in range(len(gts)):
# key = gts[i]['image_id']
# if key in gts_:
# gts_[key] += [gts[i]['caption']]
# else:
# gts_[key] = [gts[i]['caption']]
# res_ = [{'image_id': r['image_id'], 'caption': [r['caption']]} for r in res_]
# _, scores = CiderD_scorer.compute_score(gts_, res_)
# print(len(scores))
# print("CIDErD: ", scores)
# print("CIDErD: ", sum(scores) / len(scores))
# #############################3
coco = COCO(label_file)
cocoRes = coco.loadRes(res_file)
### clean result file if theres is more than one caption for each image
for i, id_ in enumerate(cocoRes.getImgIds()):
res = cocoRes.imgToAnns[id_]
if len(res) > 1: # to fix later in the code, the model should generate one caption
cocoRes.imgToAnns[id_] = [res[0]]
print("found more than one predictions: {} for img, to {}".format(res, cocoRes.imgToAnns[id_]))
cocoEval = COCOEvalCap(coco, cocoRes)
# evaluate on a subset of images by setting
# cocoEval.params['image_id'] = cocoRes.getImgIds()
# please remove this line when evaluating the full validation set
cocoEval.params['image_id'] = cocoRes.getImgIds()
# evaluate results
# SPICE will take a few minutes the first time, but speeds up due to caching
cocoEval.evaluate()
result = cocoEval.eval
if not outfile:
print(result)
else:
with open(outfile, 'w') as fp:
json.dump(result, fp, indent=4)
return result
if __name__ == "__main__":
if len(sys.argv) == 3:
evaluate_on_coco_caption(sys.argv[1], sys.argv[2])
elif len(sys.argv) == 4:
evaluate_on_coco_caption(sys.argv[1], sys.argv[2], sys.argv[3])
else:
raise NotImplementedError