UnIVAL / run_scripts /image_gen /generate_code.py
mshukor
init
26fd00c
raw
history blame
7.06 kB
import sys
sys.path.append('../../')
import argparse
import base64
from io import BytesIO
from data.file_dataset import FileDataset
from PIL import Image, ImageFile
from torchvision import transforms
from omegaconf import OmegaConf
from models.taming.models.vqgan import GumbelVQ
import os
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None
from tqdm import tqdm
class VQGANDataset(Dataset):
def __init__(self, file, selected_cols, skip_convert_images=True, image_root=None, pretraininig=True):
self.reader = FileDataset(
file,
selected_col_ids=selected_cols,
)
self.skip_convert_images = skip_convert_images
self.image_root = image_root
if self.skip_convert_images:
self.code_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((args.code_image_size,args.code_image_size),interpolation=Image.BICUBIC),
transforms.ToTensor(),
preprocess_vqgan
])
if pretraininig:
self.code_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((args.code_image_size,args.code_image_size),interpolation=Image.BICUBIC),
transforms.CenterCrop(int(0.5*args.code_image_size)),
transforms.ToTensor(),
preprocess_vqgan
])
else:
self.code_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize(args.code_image_size, interpolation=Image.LANCZOS),
transforms.ToTensor(),
preprocess_vqgan
])
if pretraininig:
self.code_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize(args.code_image_size, interpolation=Image.LANCZOS),
transforms.CenterCrop(int(0.5*args.code_image_size)),
transforms.ToTensor(),
preprocess_vqgan
])
def __len__(self):
return len(self.reader)
def __getitem__(self, item):
column_l = self.reader[item]
if len(column_l) == 4:
pair_id, image_id, image, text = column_l
elif len(column_l) == 2:
image_id, image = column_l
else:
raise NotImplementedError
if not self.skip_convert_images:
image = Image.open(BytesIO(base64.urlsafe_b64decode(image)))
else:
if self.image_root is not None:
image = os.path.join(self.image_root, image)
try:
image = Image.open(image)
except PIL.UnidentifiedImageError:
column_l = self.reader[0]
if len(column_l) == 4:
pair_id, image_id, image, text = column_l
elif len(column_l) == 2:
image_id, image = column_l
else:
raise NotImplementedError
image = Image.open(image)
code_image = self.code_resize_transform(image)
if len(column_l) == 4:
return {"code_image": code_image, "pair_id": pair_id, "image_id": image_id, "text": text}
elif len(column_l) == 2:
return {"code_image": code_image, "image_id": image_id}
def custom_to_pil(x):
x = x.detach().cpu()
x = torch.clamp(x, -1., 1.)
x = (x + 1.) / 2.
x = x.permute(1, 2, 0).numpy()
x = (255 * x).astype(np.uint8)
x = Image.fromarray(x)
if not x.mode == "RGB":
x = x.convert("RGB")
return x
def map_pixels(x, eps=0.1):
return (1 - 2 * eps) * x + eps
def preprocess_vqgan(x):
x = 2. * x - 1.
return x
def image_to_base64(img, format):
output_buffer = BytesIO()
img.save(output_buffer, format=format)
byte_data = output_buffer.getvalue()
base64_str = base64.b64encode(byte_data)
base64_str = str(base64_str, encoding='utf-8')
return base64_str
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--file", type=str, default="")
parser.add_argument("--outputs", type=str, default="")
parser.add_argument("--selected_cols", type=str, required=True)
parser.add_argument("--code_image_size", type=int, required=True)
parser.add_argument("--vq_model", type=str, required=True)
parser.add_argument("--vqgan_model_path", type=str, default=None)
parser.add_argument("--vqgan_config_path", type=str, default=None)
parser.add_argument("--log_interval", default=100, type=int, help="log interval")
parser.add_argument("--worker_cnt", type=int, default=1)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--skip_convert_images", type=bool, default=False)
parser.add_argument("--image_root", type=str, default=None)
parser.add_argument("--pretraininig", type=bool, default=True)
args = parser.parse_args()
vqgan_config = OmegaConf.load(args.vqgan_config_path)
vqgan = GumbelVQ(**vqgan_config.model.params)
sd = torch.load(args.vqgan_model_path, map_location="cpu")["state_dict"]
missing, unexpected = vqgan.load_state_dict(sd, strict=False)
for k, v in vqgan.named_parameters():
v.requires_grad = False
image_tokenizer = vqgan.cuda().eval()
writer = open(args.outputs, 'w')
print("begin process")
data_cnt = 0
dataset = VQGANDataset(args.file, args.selected_cols, skip_convert_images=args.skip_convert_images,
image_root=args.image_root, pretraininig=args.pretraininig)
dataloader = DataLoader(dataset, batch_size=args.batch_size)
num_corrupted = 0
processed_ids = {}
for data in tqdm(dataloader):
batch_size = data["code_image"].size()[0]
with torch.no_grad():
z, _, [_, _, image_codes] = image_tokenizer.encode(data["code_image"].cuda())
image_codes = image_codes.view(batch_size, -1).detach()
for i, image_code in enumerate(image_codes):
code = ' '.join([str(num) for num in image_code.tolist()])
if data['image_id'][i] in processed_ids:
continue
processed_ids[data['image_id'][i]] = 0
if len(data.keys()) == 4:
writer.write('\t'.join([data['pair_id'][i], data['image_id'][i], data['text'][i], code])+'\n')
elif len(data.keys()) == 2:
writer.write('\t'.join([data['image_id'][i], code])+'\n')
else:
raise NotImplementedError
print(len(processed_ids))
writer.close()
print("finish")
print('num_corrupted:', num_corrupted)