|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from fairseq import metrics, utils |
|
from fairseq.criterions import FairseqCriterion, register_criterion |
|
from fairseq.dataclass import FairseqDataclass |
|
from omegaconf import II |
|
|
|
|
|
@dataclass |
|
class AdjustLabelSmoothedCrossEntropyCriterionConfig(FairseqDataclass): |
|
label_smoothing: float = field( |
|
default=0.0, |
|
metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"}, |
|
) |
|
report_accuracy: bool = field( |
|
default=False, |
|
metadata={"help": "report accuracy metric"}, |
|
) |
|
ignore_prefix_size: int = field( |
|
default=0, |
|
metadata={"help": "Ignore first N tokens"}, |
|
) |
|
ignore_eos: bool = field( |
|
default=False, |
|
metadata={"help": "Ignore eos token"}, |
|
) |
|
sentence_avg: bool = II("optimization.sentence_avg") |
|
drop_worst_ratio: float = field( |
|
default=0.0, |
|
metadata={"help": "ratio for discarding bad samples"}, |
|
) |
|
drop_worst_after: int = field( |
|
default=0, |
|
metadata={"help": "steps for discarding bad samples"}, |
|
) |
|
use_rdrop: bool = field( |
|
default=False, metadata={"help": "use R-Drop"} |
|
) |
|
reg_alpha: float = field( |
|
default=1.0, metadata={"help": "weight for R-Drop"} |
|
) |
|
sample_patch_num: int = field( |
|
default=196, metadata={"help": "sample patches for v1"} |
|
) |
|
constraint_range: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "constraint range"} |
|
) |
|
|
|
|
|
def construct_rdrop_sample(x): |
|
if isinstance(x, dict): |
|
for key in x: |
|
x[key] = construct_rdrop_sample(x[key]) |
|
return x |
|
elif isinstance(x, torch.Tensor): |
|
return x.repeat(2, *([1] * (x.dim()-1))) |
|
elif isinstance(x, int): |
|
return x * 2 |
|
elif isinstance(x, np.ndarray): |
|
return x.repeat(2) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
def kl_loss(p, q): |
|
p_loss = F.kl_div(p, torch.exp(q), reduction='sum') |
|
q_loss = F.kl_div(q, torch.exp(p), reduction='sum') |
|
loss = (p_loss + q_loss) / 2 |
|
return loss |
|
|
|
|
|
def label_smoothed_nll_loss( |
|
lprobs, target, epsilon, update_num, reduce=True, |
|
drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0, |
|
constraint_masks=None, constraint_start=None, constraint_end=None |
|
): |
|
if target.dim() == lprobs.dim() - 1: |
|
target = target.unsqueeze(-1) |
|
nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1) |
|
if constraint_masks is not None: |
|
smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1) |
|
eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6) |
|
elif constraint_start is not None and constraint_end is not None: |
|
constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end)) |
|
smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1) |
|
eps_i = epsilon / (len(constraint_range) - 1 + 1e-6) |
|
else: |
|
smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1) |
|
eps_i = epsilon / (lprobs.size(-1) - 1) |
|
loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss |
|
if drop_worst_ratio > 0 and update_num > drop_worst_after: |
|
if use_rdrop: |
|
true_batch_size = loss.size(0) // 2 |
|
_, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False) |
|
loss = torch.cat([loss[indices], loss[indices+true_batch_size]]) |
|
nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]]) |
|
lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]]) |
|
else: |
|
loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False) |
|
nll_loss = nll_loss[indices] |
|
lprobs = lprobs[indices] |
|
|
|
ntokens = loss.numel() |
|
nll_loss = nll_loss.sum() |
|
loss = loss.sum() |
|
if use_rdrop: |
|
true_batch_size = lprobs.size(0) // 2 |
|
p = lprobs[:true_batch_size] |
|
q = lprobs[true_batch_size:] |
|
if constraint_start is not None and constraint_end is not None: |
|
constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end)) |
|
p = p[:, constraint_range] |
|
q = q[:, constraint_range] |
|
loss += kl_loss(p, q) * reg_alpha |
|
|
|
return loss, nll_loss, ntokens |
|
|
|
|
|
@register_criterion( |
|
"adjust_label_smoothed_cross_entropy", dataclass=AdjustLabelSmoothedCrossEntropyCriterionConfig |
|
) |
|
class AdjustLabelSmoothedCrossEntropyCriterion(FairseqCriterion): |
|
def __init__( |
|
self, |
|
task, |
|
sentence_avg, |
|
label_smoothing, |
|
ignore_prefix_size=0, |
|
ignore_eos=False, |
|
report_accuracy=False, |
|
drop_worst_ratio=0, |
|
drop_worst_after=0, |
|
use_rdrop=False, |
|
reg_alpha=1.0, |
|
sample_patch_num=196, |
|
constraint_range=None |
|
): |
|
super().__init__(task) |
|
self.sentence_avg = sentence_avg |
|
self.eps = label_smoothing |
|
self.ignore_prefix_size = ignore_prefix_size |
|
self.ignore_eos = ignore_eos |
|
self.report_accuracy = report_accuracy |
|
self.drop_worst_ratio = drop_worst_ratio |
|
self.drop_worst_after = drop_worst_after |
|
self.use_rdrop = use_rdrop |
|
self.reg_alpha = reg_alpha |
|
self.sample_patch_num = sample_patch_num |
|
|
|
self.constraint_start = None |
|
self.constraint_end = None |
|
if constraint_range is not None: |
|
constraint_start, constraint_end = constraint_range.split(',') |
|
self.constraint_start = int(constraint_start) |
|
self.constraint_end = int(constraint_end) |
|
|
|
def forward(self, model, sample, update_num=0, reduce=True): |
|
"""Compute the loss for the given sample. |
|
|
|
Returns a tuple with three elements: |
|
1) the loss |
|
2) the sample size, which is used as the denominator for the gradient |
|
3) logging outputs to display while training |
|
""" |
|
if isinstance(sample, list): |
|
if self.sample_patch_num > 0: |
|
sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num |
|
|
|
loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce) |
|
loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce) |
|
loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2 |
|
sample_size = 1 |
|
logging_output = { |
|
"loss": loss.data, |
|
"loss_v1": loss_v1.data, |
|
"loss_v2": loss_v2.data, |
|
"nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2, |
|
"ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"], |
|
"nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"], |
|
"sample_size": 1, |
|
"sample_size_v1": sample_size_v1, |
|
"sample_size_v2": sample_size_v2, |
|
} |
|
return loss, sample_size, logging_output |
|
|
|
if self.use_rdrop: |
|
construct_rdrop_sample(sample) |
|
|
|
net_output = model(**sample["net_input"]) |
|
loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce) |
|
sample_size = ( |
|
sample["target"].size(0) if self.sentence_avg else ntokens |
|
) |
|
logging_output = { |
|
"loss": loss.data, |
|
"nll_loss": nll_loss.data, |
|
"ntokens": sample["ntokens"], |
|
"nsentences": sample["nsentences"], |
|
"sample_size": sample_size, |
|
} |
|
if self.report_accuracy: |
|
n_correct, total = self.compute_accuracy(model, net_output, sample) |
|
logging_output["n_correct"] = utils.item(n_correct.data) |
|
logging_output["total"] = utils.item(total.data) |
|
|
|
return loss, sample_size, logging_output |
|
|
|
def get_lprobs_and_target(self, model, net_output, sample): |
|
conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1 |
|
constraint_masks = None |
|
if "constraint_masks" in sample and sample["constraint_masks"] is not None: |
|
constraint_masks = sample["constraint_masks"] |
|
net_output[0].masked_fill_(~constraint_masks, -math.inf) |
|
if self.constraint_start is not None and self.constraint_end is not None: |
|
net_output[0][:, :, 4:self.constraint_start] = -math.inf |
|
net_output[0][:, :, self.constraint_end:] = -math.inf |
|
lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf |
|
target = model.get_targets(sample, net_output) |
|
if self.ignore_prefix_size > 0: |
|
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous() |
|
target = target[:, self.ignore_prefix_size :].contiguous() |
|
if constraint_masks is not None: |
|
constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous() |
|
if self.ignore_eos: |
|
bsz, seq_len, embed_dim = lprobs.size() |
|
eos_indices = target.eq(self.task.tgt_dict.eos()) |
|
lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim) |
|
target = target[~eos_indices].reshape(bsz, seq_len-1) |
|
if constraint_masks is not None: |
|
constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim) |
|
if constraint_masks is not None: |
|
constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1)) |
|
return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks |
|
|
|
def compute_loss(self, model, net_output, sample, update_num, reduce=True): |
|
lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample) |
|
if constraint_masks is not None: |
|
constraint_masks = constraint_masks[target != self.padding_idx] |
|
|
|
lprobs = lprobs[target != self.padding_idx] |
|
target = target[target != self.padding_idx] |
|
loss, nll_loss, ntokens = label_smoothed_nll_loss( |
|
lprobs, |
|
target, |
|
self.eps, |
|
update_num, |
|
reduce=reduce, |
|
drop_worst_ratio=self.drop_worst_ratio, |
|
drop_worst_after=self.drop_worst_after, |
|
use_rdrop=self.use_rdrop, |
|
reg_alpha=self.reg_alpha, |
|
constraint_masks=constraint_masks, |
|
constraint_start=self.constraint_start, |
|
constraint_end=self.constraint_end |
|
) |
|
return loss, nll_loss, ntokens |
|
|
|
def compute_accuracy(self, model, net_output, sample): |
|
lprobs, target = self.get_lprobs_and_target(model, net_output, sample) |
|
mask = target.ne(self.padding_idx) |
|
n_correct = torch.sum( |
|
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)) |
|
) |
|
total = torch.sum(mask) |
|
return n_correct, total |
|
|
|
@classmethod |
|
def reduce_metrics(cls, logging_outputs) -> None: |
|
"""Aggregate logging outputs from data parallel training.""" |
|
loss_sum = sum(log.get("loss", 0) for log in logging_outputs) |
|
loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs) |
|
loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs) |
|
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) |
|
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) |
|
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) |
|
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) |
|
sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs) |
|
sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs) |
|
|
|
metrics.log_scalar( |
|
"loss", loss_sum / sample_size, sample_size, round=3 |
|
) |
|
metrics.log_scalar( |
|
"loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3 |
|
) |
|
metrics.log_scalar( |
|
"loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3 |
|
) |
|
metrics.log_scalar( |
|
"nll_loss", nll_loss_sum / sample_size, ntokens, round=3 |
|
) |
|
metrics.log_derived( |
|
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) |
|
) |
|
|
|
metrics.log_scalar( |
|
"ntokens", ntokens, 1, round=3 |
|
) |
|
metrics.log_scalar( |
|
"nsentences", nsentences, 1, round=3 |
|
) |
|
metrics.log_scalar( |
|
"sample_size", sample_size, 1, round=3 |
|
) |
|
metrics.log_scalar( |
|
"sample_size_v1", sample_size_v1, 1, round=3 |
|
) |
|
metrics.log_scalar( |
|
"sample_size_v2", sample_size_v2, 1, round=3 |
|
) |
|
|
|
total = utils.item(sum(log.get("total", 0) for log in logging_outputs)) |
|
if total > 0: |
|
metrics.log_scalar("total", total) |
|
n_correct = utils.item( |
|
sum(log.get("n_correct", 0) for log in logging_outputs) |
|
) |
|
metrics.log_scalar("n_correct", n_correct) |
|
metrics.log_derived( |
|
"accuracy", |
|
lambda meters: round( |
|
meters["n_correct"].sum * 100.0 / meters["total"].sum, 3 |
|
) |
|
if meters["total"].sum > 0 |
|
else float("nan"), |
|
) |
|
|
|
@staticmethod |
|
def logging_outputs_can_be_summed() -> bool: |
|
""" |
|
Whether the logging outputs returned by `forward` can be summed |
|
across workers prior to calling `reduce_metrics`. Setting this |
|
to True will improves distributed training speed. |
|
""" |
|
return True |
|
|