UnIVAL / fairseq /tests /test_lstm_jitable.py
mshukor
init
26fd00c
raw
history blame
4.04 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import tempfile
import unittest
import torch
from fairseq.data.dictionary import Dictionary
from fairseq.models.lstm import LSTMModel
from fairseq.tasks.fairseq_task import LegacyFairseqTask
DEFAULT_TEST_VOCAB_SIZE = 100
class DummyTask(LegacyFairseqTask):
def __init__(self, args):
super().__init__(args)
self.dictionary = get_dummy_dictionary()
if getattr(self.args, "ctc", False):
self.dictionary.add_symbol("<ctc_blank>")
self.src_dict = self.dictionary
self.tgt_dict = self.dictionary
@property
def source_dictionary(self):
return self.src_dict
@property
def target_dictionary(self):
return self.dictionary
def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE):
dummy_dict = Dictionary()
# add dummy symbol to satisfy vocab size
for id, _ in enumerate(range(vocab_size)):
dummy_dict.add_symbol("{}".format(id), 1000)
return dummy_dict
def get_dummy_task_and_parser():
"""
to build a fariseq model, we need some dummy parse and task. This function
is used to create dummy task and parser to faciliate model/criterion test
Note: we use FbSpeechRecognitionTask as the dummy task. You may want
to use other task by providing another function
"""
parser = argparse.ArgumentParser(
description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS
)
DummyTask.add_args(parser)
args = parser.parse_args([])
task = DummyTask.setup_task(args)
return task, parser
class TestJitLSTMModel(unittest.TestCase):
def _test_save_and_load(self, scripted_module):
with tempfile.NamedTemporaryFile() as f:
scripted_module.save(f.name)
torch.jit.load(f.name)
def assertTensorEqual(self, t1, t2):
t1 = t1[~torch.isnan(t1)] # can cause size mismatch errors if there are NaNs
t2 = t2[~torch.isnan(t2)]
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertEqual(t1.ne(t2).long().sum(), 0)
def test_jit_and_export_lstm(self):
task, parser = get_dummy_task_and_parser()
LSTMModel.add_args(parser)
args = parser.parse_args([])
args.criterion = ""
model = LSTMModel.build_model(args, task)
scripted_model = torch.jit.script(model)
self._test_save_and_load(scripted_model)
def test_assert_jit_vs_nonjit_(self):
task, parser = get_dummy_task_and_parser()
LSTMModel.add_args(parser)
args = parser.parse_args([])
args.criterion = ""
model = LSTMModel.build_model(args, task)
model.eval()
scripted_model = torch.jit.script(model)
scripted_model.eval()
idx = len(task.source_dictionary)
iter = 100
# Inject random input and check output
seq_len_tensor = torch.randint(1, 10, (iter,))
num_samples_tensor = torch.randint(1, 10, (iter,))
for i in range(iter):
seq_len = seq_len_tensor[i]
num_samples = num_samples_tensor[i]
src_token = (torch.randint(0, idx, (num_samples, seq_len)),)
src_lengths = torch.randint(1, seq_len + 1, (num_samples,))
src_lengths, _ = torch.sort(src_lengths, descending=True)
# Force the first sample to have seq_len
src_lengths[0] = seq_len
prev_output_token = (torch.randint(0, idx, (num_samples, 1)),)
result = model(src_token[0], src_lengths, prev_output_token[0], None)
scripted_result = scripted_model(
src_token[0], src_lengths, prev_output_token[0], None
)
self.assertTensorEqual(result[0], scripted_result[0])
self.assertTensorEqual(result[1], scripted_result[1])
if __name__ == "__main__":
unittest.main()