mshukor
init
26fd00c
raw
history blame
18.2 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch import einsum
from einops import rearrange
class VectorQuantizer(nn.Module):
"""
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
____________________________________________
Discretization bottleneck part of the VQ-VAE.
Inputs:
- n_e : number of embeddings
- e_dim : dimension of embedding
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
_____________________________________________
"""
# NOTE: this class contains a bug regarding beta; see VectorQuantizer2 for
# a fix and use legacy=False to apply that fix. VectorQuantizer2 can be
# used wherever VectorQuantizer has been used before and is additionally
# more efficient.
def __init__(self, n_e, e_dim, beta):
super(VectorQuantizer, self).__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
def forward(self, z):
"""
Inputs the output of the encoder network z and maps it to a discrete
one-hot vector that is the index of the closest embedding vector e_j
z (continuous) -> z_q (discrete)
z.shape = (batch, channel, height, width)
quantization pipeline:
1. get encoder input (B,C,H,W)
2. flatten input to (B*H*W,C)
"""
# reshape z -> (batch, height, width, channel) and flatten
z = z.permute(0, 2, 3, 1).contiguous()
z_flattened = z.view(-1, self.e_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
torch.matmul(z_flattened, self.embedding.weight.t())
## could possible replace this here
# #\start...
# find closest encodings
min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
min_encodings = torch.zeros(
min_encoding_indices.shape[0], self.n_e).to(z)
min_encodings.scatter_(1, min_encoding_indices, 1)
# dtype min encodings: torch.float32
# min_encodings shape: torch.Size([2048, 512])
# min_encoding_indices.shape: torch.Size([2048, 1])
# get quantized latent vectors
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
#.........\end
# with:
# .........\start
#min_encoding_indices = torch.argmin(d, dim=1)
#z_q = self.embedding(min_encoding_indices)
# ......\end......... (TODO)
# compute loss for embedding
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
torch.mean((z_q - z.detach()) ** 2)
# preserve gradients
z_q = z + (z_q - z).detach()
# perplexity
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def get_codebook_entry(self, indices, shape):
# shape specifying (batch, height, width, channel)
# TODO: check for more easy handling with nn.Embedding
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices)
min_encodings.scatter_(1, indices[:,None], 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
class GumbelQuantize(nn.Module):
"""
credit to @karpathy: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!)
Gumbel Softmax trick quantizer
Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016
https://arxiv.org/abs/1611.01144
"""
def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True,
kl_weight=5e-4, temp_init=1.0, use_vqinterface=True,
remap=None, unknown_index="random"):
super().__init__()
self.embedding_dim = embedding_dim
self.n_embed = n_embed
self.straight_through = straight_through
self.temperature = temp_init
self.kl_weight = kl_weight
self.proj = nn.Conv2d(num_hiddens, n_embed, 1)
self.embed = nn.Embedding(n_embed, embedding_dim)
self.use_vqinterface = use_vqinterface
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed+1
print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices.")
else:
self.re_embed = n_embed
def remap_to_used(self, inds):
ishape = inds.shape
assert len(ishape)>1
inds = inds.reshape(ishape[0],-1)
used = self.used.to(inds)
match = (inds[:,:,None]==used[None,None,...]).long()
new = match.argmax(-1)
unknown = match.sum(2)<1
if self.unknown_index == "random":
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds):
ishape = inds.shape
assert len(ishape)>1
inds = inds.reshape(ishape[0],-1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
return back.reshape(ishape)
def forward(self, z, temp=None, return_logits=False):
# force hard = True when we are in eval mode, as we must quantize. actually, always true seems to work
hard = self.straight_through if self.training else True
temp = self.temperature if temp is None else temp
logits = self.proj(z)
if self.remap is not None:
# continue only with used logits
full_zeros = torch.zeros_like(logits)
logits = logits[:,self.used,...]
soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard)
if self.remap is not None:
# go back to all entries but unused set to zero
full_zeros[:,self.used,...] = soft_one_hot
soft_one_hot = full_zeros
z_q = einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight)
# + kl divergence to the prior loss
qy = F.softmax(logits, dim=1)
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean()
ind = soft_one_hot.argmax(dim=1)
if self.remap is not None:
ind = self.remap_to_used(ind)
if self.use_vqinterface:
if return_logits:
return z_q, diff, (None, None, ind), logits
return z_q, diff, (None, None, ind)
return z_q, diff, ind
def get_codebook_entry(self, indices, shape):
b, h, w, c = shape
assert b*h*w == indices.shape[0]
indices = rearrange(indices, '(b h w) -> b h w', b=b, h=h, w=w)
if self.remap is not None:
indices = self.unmap_to_all(indices)
one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float()
z_q = einsum('b n h w, n d -> b d h w', one_hot, self.embed.weight)
return z_q
class VectorQuantizer2(nn.Module):
"""
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
"""
# NOTE: due to a bug the beta term was applied to the wrong term. for
# backwards compatibility we use the buggy version by default, but you can
# specify legacy=False to fix it.
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
sane_index_shape=False, legacy=True):
super().__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.legacy = legacy
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed+1
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices.")
else:
self.re_embed = n_e
self.sane_index_shape = sane_index_shape
def remap_to_used(self, inds):
ishape = inds.shape
assert len(ishape)>1
inds = inds.reshape(ishape[0],-1)
used = self.used.to(inds)
match = (inds[:,:,None]==used[None,None,...]).long()
new = match.argmax(-1)
unknown = match.sum(2)<1
if self.unknown_index == "random":
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds):
ishape = inds.shape
assert len(ishape)>1
inds = inds.reshape(ishape[0],-1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
return back.reshape(ishape)
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
assert temp is None or temp==1.0, "Only for interface compatible with Gumbel"
assert rescale_logits==False, "Only for interface compatible with Gumbel"
assert return_logits==False, "Only for interface compatible with Gumbel"
# reshape z -> (batch, height, width, channel) and flatten
z = rearrange(z, 'b c h w -> b h w c').contiguous()
z_flattened = z.view(-1, self.e_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
perplexity = None
min_encodings = None
# compute loss for embedding
if not self.legacy:
loss = self.beta * torch.mean((z_q.detach()-z)**2) + \
torch.mean((z_q - z.detach()) ** 2)
else:
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
torch.mean((z_q - z.detach()) ** 2)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
if self.remap is not None:
min_encoding_indices = min_encoding_indices.reshape(z.shape[0],-1) # add batch axis
min_encoding_indices = self.remap_to_used(min_encoding_indices)
min_encoding_indices = min_encoding_indices.reshape(-1,1) # flatten
if self.sane_index_shape:
min_encoding_indices = min_encoding_indices.reshape(
z_q.shape[0], z_q.shape[2], z_q.shape[3])
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def get_codebook_entry(self, indices, shape):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
indices = indices.reshape(shape[0],-1) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(-1) # flatten again
# get quantized latent vectors
z_q = self.embedding(indices)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
class EmbeddingEMA(nn.Module):
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5):
super().__init__()
self.decay = decay
self.eps = eps
weight = torch.randn(num_tokens, codebook_dim)
self.weight = nn.Parameter(weight, requires_grad = False)
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad = False)
self.embed_avg = nn.Parameter(weight.clone(), requires_grad = False)
self.update = True
def forward(self, embed_id):
return F.embedding(embed_id, self.weight)
def cluster_size_ema_update(self, new_cluster_size):
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay)
def embed_avg_ema_update(self, new_embed_avg):
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay)
def weight_update(self, num_tokens):
n = self.cluster_size.sum()
smoothed_cluster_size = (
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n
)
#normalize embedding average with smoothed cluster size
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
self.weight.data.copy_(embed_normalized)
class EMAVectorQuantizer(nn.Module):
def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5,
remap=None, unknown_index="random"):
super().__init__()
self.codebook_dim = codebook_dim
self.num_tokens = num_tokens
self.beta = beta
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed+1
print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices.")
else:
self.re_embed = n_embed
def remap_to_used(self, inds):
ishape = inds.shape
assert len(ishape)>1
inds = inds.reshape(ishape[0],-1)
used = self.used.to(inds)
match = (inds[:,:,None]==used[None,None,...]).long()
new = match.argmax(-1)
unknown = match.sum(2)<1
if self.unknown_index == "random":
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds):
ishape = inds.shape
assert len(ishape)>1
inds = inds.reshape(ishape[0],-1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
return back.reshape(ishape)
def forward(self, z):
# reshape z -> (batch, height, width, channel) and flatten
#z, 'b c h w -> b h w c'
z = rearrange(z, 'b c h w -> b h w c')
z_flattened = z.reshape(-1, self.codebook_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \
self.embedding.weight.pow(2).sum(dim=1) - 2 * \
torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) # 'n d -> d n'
encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(encoding_indices).view(z.shape)
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype)
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
if self.training and self.embedding.update:
#EMA cluster size
encodings_sum = encodings.sum(0)
self.embedding.cluster_size_ema_update(encodings_sum)
#EMA embedding average
embed_sum = encodings.transpose(0,1) @ z_flattened
self.embedding.embed_avg_ema_update(embed_sum)
#normalize embed_avg and update weight
self.embedding.weight_update(self.num_tokens)
# compute loss for embedding
loss = self.beta * F.mse_loss(z_q.detach(), z)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
#z_q, 'b h w c -> b c h w'
z_q = rearrange(z_q, 'b h w c -> b c h w')
return z_q, loss, (perplexity, encodings, encoding_indices)