|
import numpy as np |
|
import torch |
|
from torch import nn as nn |
|
from torchvision.ops.misc import FrozenBatchNorm2d |
|
import logging |
|
import h5py |
|
from tqdm import tqdm |
|
import random |
|
import json |
|
import os |
|
import pathlib |
|
|
|
|
|
dataset_split = { |
|
"audiocaps": ["train", "valid", "test"], |
|
"audioset": ["balanced_train", "unbalanced_train", "eval"], |
|
"BBCSoundEffects": ["train", "test"], |
|
"Clotho": ["train", "test", "valid"], |
|
"free_to_use_sounds": ["train", "test"], |
|
"paramount_motion": ["train", "test"], |
|
"sonniss_game_effects": ["train", "test"], |
|
"wesoundeffects": ["train", "test"], |
|
"MACS": ["train", "test"], |
|
"freesound": ["train", "test"], |
|
"FSD50K": ["train", "test", "valid"], |
|
"fsd50k_class_label": ["train", "test", "valid"], |
|
"esc50": ["train", "test"], |
|
"audiostock": ["train", "test"], |
|
"freesound_no_overlap_noesc50": ["train", "test"], |
|
"epidemic_sound_effects": ["train", "test"], |
|
"VGGSound": ["train", "test"], |
|
"urbansound8k_class_label": ["train", "test"], |
|
"audioset_t5": ["balanced_train", "unbalanced_train", "eval"], |
|
"epidemic_sound_effects_t5": ["train", "test"], |
|
"WavText5K": ["train", "test"], |
|
"esc50_no_overlap": ["train", "test"], |
|
"usd8k_no_overlap": ["train", "test"], |
|
"fsd50k_200_class_label": ["train", "test", "valid"] |
|
} |
|
|
|
|
|
def freeze_batch_norm_2d(module, module_match={}, name=""): |
|
""" |
|
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is |
|
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and |
|
returned. Otherwise, the module is walked recursively and submodules are converted in place. |
|
|
|
Args: |
|
module (torch.nn.Module): Any PyTorch module. |
|
module_match (dict): Dictionary of full module names to freeze (all if empty) |
|
name (str): Full module name (prefix) |
|
|
|
Returns: |
|
torch.nn.Module: Resulting module |
|
|
|
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 |
|
""" |
|
res = module |
|
is_match = True |
|
if module_match: |
|
is_match = name in module_match |
|
if is_match and isinstance( |
|
module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm) |
|
): |
|
res = FrozenBatchNorm2d(module.num_features) |
|
res.num_features = module.num_features |
|
res.affine = module.affine |
|
if module.affine: |
|
res.weight.data = module.weight.data.clone().detach() |
|
res.bias.data = module.bias.data.clone().detach() |
|
res.running_mean.data = module.running_mean.data |
|
res.running_var.data = module.running_var.data |
|
res.eps = module.eps |
|
else: |
|
for child_name, child in module.named_children(): |
|
full_child_name = ".".join([name, child_name]) if name else child_name |
|
new_child = freeze_batch_norm_2d(child, module_match, full_child_name) |
|
if new_child is not child: |
|
res.add_module(child_name, new_child) |
|
return res |
|
|
|
|
|
def exist(dataset_name, dataset_type): |
|
""" |
|
Check if dataset exists |
|
""" |
|
if dataset_type in dataset_split[dataset_name]: |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
def get_tar_path_from_dataset_name( |
|
dataset_names, |
|
dataset_types, |
|
islocal, |
|
dataset_path, |
|
proportion=1, |
|
full_dataset=None |
|
): |
|
""" |
|
Get tar path from dataset name and type |
|
""" |
|
output = [] |
|
for n in dataset_names: |
|
if full_dataset is not None and n in full_dataset: |
|
current_dataset_types = dataset_split[n] |
|
else: |
|
current_dataset_types = dataset_types |
|
for s in current_dataset_types: |
|
tmp = [] |
|
if islocal: |
|
sizefilepath_ = f"{dataset_path}/{n}/{s}/sizes.json" |
|
if not os.path.exists(sizefilepath_): |
|
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json" |
|
else: |
|
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json" |
|
if not os.path.exists(sizefilepath_): |
|
continue |
|
sizes = json.load(open(sizefilepath_, "r")) |
|
for k in sizes.keys(): |
|
if islocal: |
|
tmp.append(f"{dataset_path}/{n}/{s}/{k}") |
|
else: |
|
tmp.append( |
|
f"pipe:aws s3 --cli-connect-timeout 0 cp s3://s-laion-audio/webdataset_tar/{n}/{s}/{k} -" |
|
) |
|
if proportion != 1: |
|
tmp = random.sample(tmp, int(proportion * len(tmp))) |
|
output.append(tmp) |
|
return sum(output, []) |
|
|
|
|
|
def get_tar_path_from_txts(txt_path, islocal, proportion=1): |
|
""" |
|
Get tar path from txt path |
|
""" |
|
if isinstance(txt_path, (list, tuple)): |
|
return sum( |
|
[ |
|
get_tar_path_from_txts( |
|
txt_path[i], islocal=islocal, proportion=proportion |
|
) |
|
for i in range(len(txt_path)) |
|
], |
|
[], |
|
) |
|
if isinstance(txt_path, str): |
|
with open(txt_path) as f: |
|
lines = f.readlines() |
|
if islocal: |
|
lines = [ |
|
lines[i] |
|
.split("\n")[0] |
|
.replace("pipe:aws s3 cp s3://s-laion-audio/", "/mnt/audio_clip/") |
|
for i in range(len(lines)) |
|
] |
|
else: |
|
lines = [ |
|
lines[i].split("\n")[0].replace(".tar", ".tar -") |
|
for i in range(len(lines)) |
|
] |
|
if proportion != 1: |
|
print("Sampling tars with proportion of {}".format(proportion)) |
|
lines = random.sample(lines, int(proportion * len(lines))) |
|
return lines |
|
|
|
|
|
def get_mix_lambda(mixup_alpha, batch_size): |
|
mixup_lambdas = [ |
|
np.random.beta(mixup_alpha, mixup_alpha, 1)[0] for _ in range(batch_size) |
|
] |
|
return np.array(mixup_lambdas).astype(np.float32) |
|
|
|
|
|
def do_mixup(x, mixup_lambda): |
|
""" |
|
Args: |
|
x: (batch_size , ...) |
|
mixup_lambda: (batch_size,) |
|
Returns: |
|
out: (batch_size, ...) |
|
""" |
|
out = ( |
|
x.transpose(0, -1) * mixup_lambda |
|
+ torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda) |
|
).transpose(0, -1) |
|
return out |
|
|
|
|
|
def interpolate(x, ratio): |
|
"""Interpolate data in time domain. This is used to compensate the |
|
resolution reduction in downsampling of a CNN. |
|
|
|
Args: |
|
x: (batch_size, time_steps, classes_num) |
|
ratio: int, ratio to interpolate |
|
Returns: |
|
upsampled: (batch_size, time_steps * ratio, classes_num) |
|
""" |
|
(batch_size, time_steps, classes_num) = x.shape |
|
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1) |
|
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num) |
|
return upsampled |
|
|
|
|
|
def pad_framewise_output(framewise_output, frames_num): |
|
"""Pad framewise_output to the same length as input frames. The pad value |
|
is the same as the value of the last frame. |
|
Args: |
|
framewise_output: (batch_size, frames_num, classes_num) |
|
frames_num: int, number of frames to pad |
|
Outputs: |
|
output: (batch_size, frames_num, classes_num) |
|
""" |
|
pad = framewise_output[:, -1:, :].repeat( |
|
1, frames_num - framewise_output.shape[1], 1 |
|
) |
|
"""tensor for padding""" |
|
|
|
output = torch.cat((framewise_output, pad), dim=1) |
|
"""(batch_size, frames_num, classes_num)""" |
|
|
|
|
|
def process_ipc(index_path, classes_num, filename): |
|
|
|
logging.info("Load Data...............") |
|
ipc = [[] for _ in range(classes_num)] |
|
with h5py.File(index_path, "r") as f: |
|
for i in tqdm(range(len(f["target"]))): |
|
t_class = np.where(f["target"][i])[0] |
|
for t in t_class: |
|
ipc[t].append(i) |
|
print(ipc) |
|
np.save(filename, ipc) |
|
logging.info("Load Data Succeed...............") |
|
|
|
|
|
def save_to_dict(s, o_={}): |
|
sp = s.split(": ") |
|
o_.update({sp[0]: float(sp[1])}) |
|
return o_ |
|
|
|
|
|
def get_data_from_log(txt_path): |
|
""" |
|
Output dictionary from out.txt log file |
|
""" |
|
with open(txt_path) as f: |
|
lines = f.readlines() |
|
val_data = {} |
|
train_data = {} |
|
train_losses = [] |
|
train_losses_epoch = [] |
|
for i in range(len(lines)): |
|
if "| INFO |" in lines[i]: |
|
if "Eval Epoch" in lines[i]: |
|
if "val_loss" in lines[i]: |
|
|
|
line = lines[i].split("Eval Epoch: ")[-1] |
|
num_epoch = int(line.split(" ")[0].split(" ")[0]) |
|
d = { |
|
line.split(" ")[0] |
|
.split(" ")[1] |
|
.replace(":", ""): float(line.split(" ")[0].split(" ")[-1]) |
|
} |
|
for i in range(1, len(line.split(" "))): |
|
d = save_to_dict(line.split(" ")[i], d) |
|
val_data[num_epoch] = d |
|
elif "Train Epoch" in lines[i]: |
|
num_epoch = int(lines[i].split("Train Epoch: ")[1][0]) |
|
loss = float(lines[i].split("Loss: ")[-1].split(" (")[0]) |
|
train_losses.append(loss) |
|
train_losses_epoch.append(num_epoch) |
|
for i in range(len(train_losses)): |
|
train_data[i] = { |
|
"num_epoch": train_losses_epoch[i], |
|
"train_loss": train_losses[i], |
|
} |
|
return train_data, val_data |
|
|
|
|
|
def save_p(obj, filename): |
|
import pickle |
|
|
|
try: |
|
from deepdiff import DeepDiff |
|
except: |
|
os.system("pip install deepdiff") |
|
from deepdiff import DeepDiff |
|
with open(filename, "wb") as file: |
|
pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL) |
|
with open(filename, "rb") as file: |
|
z = pickle.load(file) |
|
assert ( |
|
DeepDiff(obj, z, ignore_string_case=True) == {} |
|
), "there is something wrong with the saving process" |
|
return |
|
|
|
|
|
def load_p(filename): |
|
import pickle |
|
|
|
with open(filename, "rb") as file: |
|
z = pickle.load(file) |
|
return z |
|
|
|
|
|
def save_json(data, name="data.json"): |
|
import json |
|
with open(name, 'w') as fp: |
|
json.dump(data, fp) |
|
return |
|
|
|
|
|
def load_json(name): |
|
import json |
|
with open(name, 'r') as fp: |
|
data = json.load(fp) |
|
return data |
|
|
|
|
|
from multiprocessing import Process, Manager |
|
from multiprocessing import Process, Value, Array |
|
from ctypes import c_wchar |
|
|
|
|
|
def load_class_label(path): |
|
|
|
|
|
out = None |
|
if path is not None: |
|
if pathlib.Path(path).suffix in [".pkl", ".pickle"]: |
|
out = load_p(path) |
|
elif pathlib.Path(path).suffix in [".json", ".txt"]: |
|
out = load_json(path) |
|
elif pathlib.Path(path).suffix in [".npy", ".npz"]: |
|
out = np.load(path) |
|
elif pathlib.Path(path).suffix in [".csv"]: |
|
import pandas as pd |
|
out = pd.read_csv(path) |
|
return out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from torch import optim |
|
|
|
|
|
def get_optimizer(params, lr, betas, eps, momentum, optimizer_name): |
|
if optimizer_name.lower() == "adamw": |
|
optimizer = optim.AdamW( |
|
params, lr=lr, betas=betas, eps=eps |
|
) |
|
elif optimizer_name.lower() == "sgd": |
|
optimizer = optim.SGD( |
|
params, lr=lr, momentum=momentum |
|
) |
|
elif optimizer_name.lower() == "adam": |
|
optimizer = optim.Adam( |
|
params, lr=lr, betas=betas, eps=eps |
|
) |
|
else: |
|
raise ValueError("optimizer name is not correct") |
|
return optimizer |
|
|