|
"""PyTorch ResNet |
|
|
|
This started as a copy of https://github.com/pytorch/vision 'resnet.py' (BSD-3-Clause) with |
|
additional dropout and dynamic global avg/max pool. |
|
|
|
ResNeXt, SE-ResNeXt, SENet, and MXNet Gluon stem/downsample variants, tiered stems added by Ross Wightman |
|
|
|
Copyright 2019, Ross Wightman |
|
""" |
|
import math |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.models.layers import DropBlock2d, DropPath, AvgPool2dSame, BlurPool2d, GroupNorm, create_attn, get_attn, \ |
|
get_act_layer, get_norm_layer, create_classifier |
|
from timm.models.helpers import build_model_with_cfg |
|
from timm.models.helpers import checkpoint_seq |
|
from timm.models import register_model, model_entrypoint |
|
|
|
__all__ = ['ResNet', 'BasicBlock', 'Bottleneck'] |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bilinear', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'conv1', 'classifier': 'fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
|
|
'resnet10t': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet10t_176_c3-f3215ab1.pth', |
|
input_size=(3, 176, 176), pool_size=(6, 6), |
|
test_crop_pct=0.95, test_input_size=(3, 224, 224), |
|
first_conv='conv1.0'), |
|
'resnet14t': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet14t_176_c3-c4ed2c37.pth', |
|
input_size=(3, 176, 176), pool_size=(6, 6), |
|
test_crop_pct=0.95, test_input_size=(3, 224, 224), |
|
first_conv='conv1.0'), |
|
'resnet18': _cfg(url='https://download.pytorch.org/models/resnet18-5c106cde.pth'), |
|
'resnet18d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet18d_ra2-48a79e06.pth', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnet34': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth'), |
|
'resnet34d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34d_ra2-f8dcfcaf.pth', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnet26': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth', |
|
interpolation='bicubic'), |
|
'resnet26d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnet26t': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet26t_256_ra2-6f6fa748.pth', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), |
|
'resnet50': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth', |
|
interpolation='bicubic', crop_pct=0.95), |
|
'resnet50d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnet50t': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnet101': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth', |
|
interpolation='bicubic', crop_pct=0.95), |
|
'resnet101d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), |
|
crop_pct=1.0, test_input_size=(3, 320, 320)), |
|
'resnet152': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a1h-dc400468.pth', |
|
interpolation='bicubic', crop_pct=0.95), |
|
'resnet152d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), |
|
crop_pct=1.0, test_input_size=(3, 320, 320)), |
|
'resnet200': _cfg(url='', interpolation='bicubic'), |
|
'resnet200d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), |
|
crop_pct=1.0, test_input_size=(3, 320, 320)), |
|
'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'), |
|
'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'), |
|
'tv_resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'), |
|
'tv_resnet152': _cfg(url='https://download.pytorch.org/models/resnet152-b121ed2d.pth'), |
|
'wide_resnet50_2': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/wide_resnet50_racm-8234f177.pth', |
|
interpolation='bicubic'), |
|
'wide_resnet101_2': _cfg(url='https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth'), |
|
|
|
|
|
'resnet50_gn': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_gn_a1h2-8fe6c4d0.pth', |
|
crop_pct=0.94, interpolation='bicubic'), |
|
|
|
|
|
'resnext50_32x4d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a1h-0146ab0a.pth', |
|
interpolation='bicubic', crop_pct=0.95), |
|
'resnext50d_32x4d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth', |
|
interpolation='bicubic', |
|
first_conv='conv1.0'), |
|
'resnext101_32x4d': _cfg(url=''), |
|
'resnext101_32x8d': _cfg(url='https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth'), |
|
'resnext101_64x4d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/resnext101_64x4d_c-0d0e0cc0.pth', |
|
interpolation='bicubic', crop_pct=1.0, test_input_size=(3, 288, 288)), |
|
'tv_resnext50_32x4d': _cfg(url='https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth'), |
|
|
|
|
|
|
|
|
|
'ig_resnext101_32x8d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth'), |
|
'ig_resnext101_32x16d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth'), |
|
'ig_resnext101_32x32d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth'), |
|
'ig_resnext101_32x48d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth'), |
|
|
|
|
|
|
|
'ssl_resnet18': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth'), |
|
'ssl_resnet50': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth'), |
|
'ssl_resnext50_32x4d': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth'), |
|
'ssl_resnext101_32x4d': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth'), |
|
'ssl_resnext101_32x8d': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth'), |
|
'ssl_resnext101_32x16d': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth'), |
|
|
|
|
|
|
|
'swsl_resnet18': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth'), |
|
'swsl_resnet50': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth'), |
|
'swsl_resnext50_32x4d': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth'), |
|
'swsl_resnext101_32x4d': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth'), |
|
'swsl_resnext101_32x8d': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth'), |
|
'swsl_resnext101_32x16d': _cfg( |
|
url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth'), |
|
|
|
|
|
'ecaresnet26t': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet26t_ra2-46609757.pth', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), |
|
crop_pct=0.95, test_input_size=(3, 320, 320)), |
|
'ecaresnetlight': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnetlight-75a9c627.pth', |
|
interpolation='bicubic'), |
|
'ecaresnet50d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet50d-93c81e3b.pth', |
|
interpolation='bicubic', |
|
first_conv='conv1.0'), |
|
'ecaresnet50d_pruned': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet50d_p-e4fa23c2.pth', |
|
interpolation='bicubic', |
|
first_conv='conv1.0'), |
|
'ecaresnet50t': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet50t_ra2-f7ac63c4.pth', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), |
|
crop_pct=0.95, test_input_size=(3, 320, 320)), |
|
'ecaresnet101d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet101d-153dad65.pth', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'ecaresnet101d_pruned': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet101d_p-9e74cb91.pth', |
|
interpolation='bicubic', |
|
first_conv='conv1.0'), |
|
'ecaresnet200d': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)), |
|
'ecaresnet269d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet269d_320_ra2-7baa55cb.pth', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 320, 320), pool_size=(10, 10), |
|
crop_pct=1.0, test_input_size=(3, 352, 352)), |
|
|
|
|
|
'ecaresnext26t_32x4d': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'ecaresnext50t_32x4d': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
|
|
|
|
'seresnet18': _cfg( |
|
url='', |
|
interpolation='bicubic'), |
|
'seresnet34': _cfg( |
|
url='', |
|
interpolation='bicubic'), |
|
'seresnet50': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet50_ra_224-8efdb4bb.pth', |
|
interpolation='bicubic'), |
|
'seresnet50t': _cfg( |
|
url='', |
|
interpolation='bicubic', |
|
first_conv='conv1.0'), |
|
'seresnet101': _cfg( |
|
url='', |
|
interpolation='bicubic'), |
|
'seresnet152': _cfg( |
|
url='', |
|
interpolation='bicubic'), |
|
'seresnet152d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet152d_ra2-04464dd2.pth', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), |
|
crop_pct=1.0, test_input_size=(3, 320, 320) |
|
), |
|
'seresnet200d': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)), |
|
'seresnet269d': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)), |
|
|
|
|
|
'seresnext26d_32x4d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26d_32x4d-80fa48a3.pth', |
|
interpolation='bicubic', |
|
first_conv='conv1.0'), |
|
'seresnext26t_32x4d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26tn_32x4d-569cb627.pth', |
|
interpolation='bicubic', |
|
first_conv='conv1.0'), |
|
'seresnext50_32x4d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext50_32x4d_racm-a304a460.pth', |
|
interpolation='bicubic'), |
|
'seresnext101_32x4d': _cfg( |
|
url='', |
|
interpolation='bicubic'), |
|
'seresnext101_32x8d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnext101_32x8d_ah-e6bc4c0a.pth', |
|
interpolation='bicubic', test_input_size=(3, 288, 288), crop_pct=1.0), |
|
'seresnext101d_32x8d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnext101d_32x8d_ah-191d7b94.pth', |
|
interpolation='bicubic', first_conv='conv1.0', test_input_size=(3, 288, 288), crop_pct=1.0), |
|
|
|
'senet154': _cfg( |
|
url='', |
|
interpolation='bicubic', |
|
first_conv='conv1.0'), |
|
|
|
|
|
'resnetblur18': _cfg( |
|
interpolation='bicubic'), |
|
'resnetblur50': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth', |
|
interpolation='bicubic'), |
|
'resnetblur50d': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnetblur101d': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnetaa50': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnetaa50_a1h-4cf422b3.pth', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0, interpolation='bicubic'), |
|
'resnetaa50d': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnetaa101d': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'seresnetaa50d': _cfg( |
|
url='', |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'seresnextaa101d_32x8d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnextaa101d_32x8d_ah-83c8ae12.pth', |
|
interpolation='bicubic', first_conv='conv1.0', test_input_size=(3, 288, 288), crop_pct=1.0), |
|
|
|
|
|
'resnetrs50': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs50_ema-6b53758b.pth', |
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.91, test_input_size=(3, 224, 224), |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnetrs101': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs101_i192_ema-1509bbf6.pth', |
|
input_size=(3, 192, 192), pool_size=(6, 6), crop_pct=0.94, test_input_size=(3, 288, 288), |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnetrs152': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs152_i256_ema-a9aff7f9.pth', |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320), |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnetrs200': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/resnetrs200_c-6b698b88.pth', |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320), |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnetrs270': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs270_ema-b40e674c.pth', |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 352, 352), |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnetrs350': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs350_i256_ema-5a1aa8f1.pth', |
|
input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, test_input_size=(3, 384, 384), |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
'resnetrs420': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs420_ema-972dee69.pth', |
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, test_input_size=(3, 416, 416), |
|
interpolation='bicubic', first_conv='conv1.0'), |
|
} |
|
|
|
|
|
def get_padding(kernel_size, stride, dilation=1): |
|
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 |
|
return padding |
|
|
|
|
|
def create_aa(aa_layer, channels, stride=2, enable=True): |
|
if not aa_layer or not enable: |
|
return nn.Identity() |
|
return aa_layer(stride) if issubclass(aa_layer, nn.AvgPool2d) else aa_layer(channels=channels, stride=stride) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
cardinality=1, |
|
base_width=64, |
|
reduce_first=1, |
|
dilation=1, |
|
first_dilation=None, |
|
act_layer=nn.ReLU, |
|
norm_layer=nn.BatchNorm2d, |
|
attn_layer=None, |
|
aa_layer=None, |
|
drop_block=None, |
|
drop_path=None, |
|
): |
|
super(BasicBlock, self).__init__() |
|
|
|
assert cardinality == 1, 'BasicBlock only supports cardinality of 1' |
|
assert base_width == 64, 'BasicBlock does not support changing base width' |
|
first_planes = planes // reduce_first |
|
outplanes = planes * self.expansion |
|
first_dilation = first_dilation or dilation |
|
use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation) |
|
|
|
self.conv1 = nn.Conv2d( |
|
inplanes, first_planes, kernel_size=3, stride=1 if use_aa else stride, padding=first_dilation, |
|
dilation=first_dilation, bias=False) |
|
self.bn1 = norm_layer(first_planes) |
|
self.drop_block = drop_block() if drop_block is not None else nn.Identity() |
|
self.act1 = act_layer(inplace=True) |
|
self.aa = create_aa(aa_layer, channels=first_planes, stride=stride, enable=use_aa) |
|
|
|
self.conv2 = nn.Conv2d( |
|
first_planes, outplanes, kernel_size=3, padding=dilation, dilation=dilation, bias=False) |
|
self.bn2 = norm_layer(outplanes) |
|
|
|
self.se = create_attn(attn_layer, outplanes) |
|
|
|
self.act2 = act_layer(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
self.dilation = dilation |
|
self.drop_path = drop_path |
|
|
|
def zero_init_last(self): |
|
if getattr(self.bn2, 'weight', None) is not None: |
|
nn.init.zeros_(self.bn2.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.drop_block(x) |
|
x = self.act1(x) |
|
x = self.aa(x) |
|
|
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
|
|
if self.se is not None: |
|
x = self.se(x) |
|
|
|
if self.drop_path is not None: |
|
x = self.drop_path(x) |
|
|
|
if self.downsample is not None: |
|
shortcut = self.downsample(shortcut) |
|
x += shortcut |
|
x = self.act2(x) |
|
|
|
return x |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
cardinality=1, |
|
base_width=64, |
|
reduce_first=1, |
|
dilation=1, |
|
first_dilation=None, |
|
act_layer=nn.ReLU, |
|
norm_layer=nn.BatchNorm2d, |
|
attn_layer=None, |
|
aa_layer=None, |
|
drop_block=None, |
|
drop_path=None, |
|
): |
|
super(Bottleneck, self).__init__() |
|
|
|
width = int(math.floor(planes * (base_width / 64)) * cardinality) |
|
first_planes = width // reduce_first |
|
outplanes = planes * self.expansion |
|
first_dilation = first_dilation or dilation |
|
use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation) |
|
|
|
self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False) |
|
self.bn1 = norm_layer(first_planes) |
|
self.act1 = act_layer(inplace=True) |
|
|
|
self.conv2 = nn.Conv2d( |
|
first_planes, width, kernel_size=3, stride=1 if use_aa else stride, |
|
padding=first_dilation, dilation=first_dilation, groups=cardinality, bias=False) |
|
self.bn2 = norm_layer(width) |
|
self.drop_block = drop_block() if drop_block is not None else nn.Identity() |
|
self.act2 = act_layer(inplace=True) |
|
self.aa = create_aa(aa_layer, channels=width, stride=stride, enable=use_aa) |
|
|
|
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False) |
|
self.bn3 = norm_layer(outplanes) |
|
|
|
self.se = create_attn(attn_layer, outplanes) |
|
|
|
self.act3 = act_layer(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
self.dilation = dilation |
|
self.drop_path = drop_path |
|
|
|
def zero_init_last(self): |
|
if getattr(self.bn3, 'weight', None) is not None: |
|
nn.init.zeros_(self.bn3.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.act1(x) |
|
|
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.drop_block(x) |
|
x = self.act2(x) |
|
x = self.aa(x) |
|
|
|
x = self.conv3(x) |
|
x = self.bn3(x) |
|
|
|
if self.se is not None: |
|
x = self.se(x) |
|
|
|
if self.drop_path is not None: |
|
x = self.drop_path(x) |
|
|
|
if self.downsample is not None: |
|
shortcut = self.downsample(shortcut) |
|
x += shortcut |
|
x = self.act3(x) |
|
|
|
return x |
|
|
|
|
|
def downsample_conv( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
dilation=1, |
|
first_dilation=None, |
|
norm_layer=None, |
|
): |
|
norm_layer = norm_layer or nn.BatchNorm2d |
|
kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size |
|
first_dilation = (first_dilation or dilation) if kernel_size > 1 else 1 |
|
p = get_padding(kernel_size, stride, first_dilation) |
|
|
|
return nn.Sequential(*[ |
|
nn.Conv2d( |
|
in_channels, out_channels, kernel_size, stride=stride, padding=p, dilation=first_dilation, bias=False), |
|
norm_layer(out_channels) |
|
]) |
|
|
|
|
|
def downsample_avg( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
dilation=1, |
|
first_dilation=None, |
|
norm_layer=None, |
|
): |
|
norm_layer = norm_layer or nn.BatchNorm2d |
|
avg_stride = stride if dilation == 1 else 1 |
|
if stride == 1 and dilation == 1: |
|
pool = nn.Identity() |
|
else: |
|
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d |
|
pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) |
|
|
|
return nn.Sequential(*[ |
|
pool, |
|
nn.Conv2d(in_channels, out_channels, 1, stride=1, padding=0, bias=False), |
|
norm_layer(out_channels) |
|
]) |
|
|
|
|
|
def drop_blocks(drop_prob=0.): |
|
return [ |
|
None, None, |
|
partial(DropBlock2d, drop_prob=drop_prob, block_size=5, gamma_scale=0.25) if drop_prob else None, |
|
partial(DropBlock2d, drop_prob=drop_prob, block_size=3, gamma_scale=1.00) if drop_prob else None] |
|
|
|
|
|
def make_blocks( |
|
block_fn, |
|
channels, |
|
block_repeats, |
|
inplanes, |
|
reduce_first=1, |
|
output_stride=32, |
|
down_kernel_size=1, |
|
avg_down=False, |
|
drop_block_rate=0., |
|
drop_path_rate=0., |
|
**kwargs, |
|
): |
|
stages = [] |
|
feature_info = [] |
|
net_num_blocks = sum(block_repeats) |
|
net_block_idx = 0 |
|
net_stride = 4 |
|
dilation = prev_dilation = 1 |
|
for stage_idx, (planes, num_blocks, db) in enumerate(zip(channels, block_repeats, drop_blocks(drop_block_rate))): |
|
stage_name = f'layer{stage_idx + 1}' |
|
stride = 1 if stage_idx == 0 else 2 |
|
if net_stride >= output_stride: |
|
dilation *= stride |
|
stride = 1 |
|
else: |
|
net_stride *= stride |
|
|
|
downsample = None |
|
if stride != 1 or inplanes != planes * block_fn.expansion: |
|
down_kwargs = dict( |
|
in_channels=inplanes, |
|
out_channels=planes * block_fn.expansion, |
|
kernel_size=down_kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
first_dilation=prev_dilation, |
|
norm_layer=kwargs.get('norm_layer'), |
|
) |
|
downsample = downsample_avg(**down_kwargs) if avg_down else downsample_conv(**down_kwargs) |
|
|
|
block_kwargs = dict(reduce_first=reduce_first, dilation=dilation, drop_block=db, **kwargs) |
|
blocks = [] |
|
for block_idx in range(num_blocks): |
|
downsample = downsample if block_idx == 0 else None |
|
stride = stride if block_idx == 0 else 1 |
|
block_dpr = drop_path_rate * net_block_idx / (net_num_blocks - 1) |
|
blocks.append(block_fn( |
|
inplanes, planes, stride, downsample, first_dilation=prev_dilation, |
|
drop_path=DropPath(block_dpr) if block_dpr > 0. else None, **block_kwargs)) |
|
prev_dilation = dilation |
|
inplanes = planes * block_fn.expansion |
|
net_block_idx += 1 |
|
|
|
stages.append((stage_name, nn.Sequential(*blocks))) |
|
feature_info.append(dict(num_chs=inplanes, reduction=net_stride, module=stage_name)) |
|
|
|
return stages, feature_info |
|
|
|
|
|
class ResNet(nn.Module): |
|
"""ResNet / ResNeXt / SE-ResNeXt / SE-Net |
|
|
|
This class implements all variants of ResNet, ResNeXt, SE-ResNeXt, and SENet that |
|
* have > 1 stride in the 3x3 conv layer of bottleneck |
|
* have conv-bn-act ordering |
|
|
|
This ResNet impl supports a number of stem and downsample options based on the v1c, v1d, v1e, and v1s |
|
variants included in the MXNet Gluon ResNetV1b model. The C and D variants are also discussed in the |
|
'Bag of Tricks' paper: https://arxiv.org/pdf/1812.01187. The B variant is equivalent to torchvision default. |
|
|
|
ResNet variants (the same modifications can be used in SE/ResNeXt models as well): |
|
* normal, b - 7x7 stem, stem_width = 64, same as torchvision ResNet, NVIDIA ResNet 'v1.5', Gluon v1b |
|
* c - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64) |
|
* d - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64), average pool in downsample |
|
* e - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128), average pool in downsample |
|
* s - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128) |
|
* t - 3 layer deep 3x3 stem, stem width = 32 (24, 48, 64), average pool in downsample |
|
* tn - 3 layer deep 3x3 stem, stem width = 32 (24, 32, 64), average pool in downsample |
|
|
|
ResNeXt |
|
* normal - 7x7 stem, stem_width = 64, standard cardinality and base widths |
|
* same c,d, e, s variants as ResNet can be enabled |
|
|
|
SE-ResNeXt |
|
* normal - 7x7 stem, stem_width = 64 |
|
* same c, d, e, s variants as ResNet can be enabled |
|
|
|
SENet-154 - 3 layer deep 3x3 stem (same as v1c-v1s), stem_width = 64, cardinality=64, |
|
reduction by 2 on width of first bottleneck convolution, 3x3 downsample convs after first block |
|
""" |
|
|
|
def __init__( |
|
self, |
|
block, |
|
layers, |
|
num_classes=1000, |
|
in_chans=3, |
|
output_stride=32, |
|
global_pool='avg', |
|
cardinality=1, |
|
base_width=64, |
|
stem_width=64, |
|
stem_type='', |
|
replace_stem_pool=False, |
|
block_reduce_first=1, |
|
down_kernel_size=1, |
|
avg_down=False, |
|
act_layer=nn.ReLU, |
|
norm_layer=None, |
|
aa_layer=None, |
|
drop_rate=0.0, |
|
drop_path_rate=0., |
|
drop_block_rate=0., |
|
zero_init_last=True, |
|
block_args=None, |
|
): |
|
""" |
|
Args: |
|
block (nn.Module): class for the residual block. Options are BasicBlock, Bottleneck. |
|
layers (List[int]) : number of layers in each block |
|
num_classes (int): number of classification classes (default 1000) |
|
in_chans (int): number of input (color) channels. (default 3) |
|
output_stride (int): output stride of the network, 32, 16, or 8. (default 32) |
|
global_pool (str): Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' (default 'avg') |
|
cardinality (int): number of convolution groups for 3x3 conv in Bottleneck. (default 1) |
|
base_width (int): bottleneck channels factor. `planes * base_width / 64 * cardinality` (default 64) |
|
stem_width (int): number of channels in stem convolutions (default 64) |
|
stem_type (str): The type of stem (default ''): |
|
* '', default - a single 7x7 conv with a width of stem_width |
|
* 'deep' - three 3x3 convolution layers of widths stem_width, stem_width, stem_width * 2 |
|
* 'deep_tiered' - three 3x3 conv layers of widths stem_width//4 * 3, stem_width, stem_width * 2 |
|
replace_stem_pool (bool): replace stem max-pooling layer with a 3x3 stride-2 convolution |
|
block_reduce_first (int): Reduction factor for first convolution output width of residual blocks, |
|
1 for all archs except senets, where 2 (default 1) |
|
down_kernel_size (int): kernel size of residual block downsample path, |
|
1x1 for most, 3x3 for senets (default: 1) |
|
avg_down (bool): use avg pooling for projection skip connection between stages/downsample (default False) |
|
act_layer (str, nn.Module): activation layer |
|
norm_layer (str, nn.Module): normalization layer |
|
aa_layer (nn.Module): anti-aliasing layer |
|
drop_rate (float): Dropout probability before classifier, for training (default 0.) |
|
drop_path_rate (float): Stochastic depth drop-path rate (default 0.) |
|
drop_block_rate (float): Drop block rate (default 0.) |
|
zero_init_last (bool): zero-init the last weight in residual path (usually last BN affine weight) |
|
block_args (dict): Extra kwargs to pass through to block module |
|
""" |
|
super(ResNet, self).__init__() |
|
|
|
block_args = block_args or dict() |
|
assert output_stride in (8, 16, 32) |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
self.grad_checkpointing = False |
|
|
|
act_layer = get_act_layer(act_layer) |
|
|
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
norm_layer = get_norm_layer(norm_layer) |
|
|
|
|
|
deep_stem = 'deep' in stem_type |
|
inplanes = stem_width * 2 if deep_stem else 64 |
|
if deep_stem: |
|
stem_chs = (stem_width, stem_width) |
|
if 'tiered' in stem_type: |
|
stem_chs = (3 * (stem_width // 4), stem_width) |
|
self.conv1 = nn.Sequential(*[ |
|
nn.Conv2d(in_chans, stem_chs[0], 3, stride=2, padding=1, bias=False), |
|
norm_layer(stem_chs[0]), |
|
act_layer(inplace=True), |
|
nn.Conv2d(stem_chs[0], stem_chs[1], 3, stride=1, padding=1, bias=False), |
|
norm_layer(stem_chs[1]), |
|
act_layer(inplace=True), |
|
nn.Conv2d(stem_chs[1], inplanes, 3, stride=1, padding=1, bias=False)]) |
|
else: |
|
self.conv1 = nn.Conv2d(in_chans, inplanes, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = norm_layer(inplanes) |
|
self.act1 = act_layer(inplace=True) |
|
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')] |
|
|
|
|
|
if replace_stem_pool: |
|
self.maxpool = nn.Sequential(*filter(None, [ |
|
nn.Conv2d(inplanes, inplanes, 3, stride=1 if aa_layer else 2, padding=1, bias=False), |
|
create_aa(aa_layer, channels=inplanes, stride=2) if aa_layer is not None else None, |
|
norm_layer(inplanes), |
|
act_layer(inplace=True) |
|
])) |
|
else: |
|
if aa_layer is not None: |
|
if issubclass(aa_layer, nn.AvgPool2d): |
|
self.maxpool = aa_layer(2) |
|
else: |
|
self.maxpool = nn.Sequential(*[ |
|
nn.MaxPool2d(kernel_size=3, stride=1, padding=1), |
|
aa_layer(channels=inplanes, stride=2)]) |
|
else: |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
|
|
channels = [64, 128, 256, 512] |
|
stage_modules, stage_feature_info = make_blocks( |
|
block, |
|
channels, |
|
layers, |
|
inplanes, |
|
cardinality=cardinality, |
|
base_width=base_width, |
|
output_stride=output_stride, |
|
reduce_first=block_reduce_first, |
|
avg_down=avg_down, |
|
down_kernel_size=down_kernel_size, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
aa_layer=aa_layer, |
|
drop_block_rate=drop_block_rate, |
|
drop_path_rate=drop_path_rate, |
|
**block_args, |
|
) |
|
for stage in stage_modules: |
|
self.add_module(*stage) |
|
self.feature_info.extend(stage_feature_info) |
|
|
|
|
|
self.num_features = 512 * block.expansion |
|
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
self.init_weights(zero_init_last=zero_init_last) |
|
|
|
@staticmethod |
|
def from_pretrained(model_name: str, load_weights=True, **kwargs) -> 'ResNet': |
|
entry_fn = model_entrypoint(model_name, 'resnet') |
|
return entry_fn(pretrained=not load_weights, **kwargs) |
|
|
|
@torch.jit.ignore |
|
def init_weights(self, zero_init_last=True): |
|
for n, m in self.named_modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
if zero_init_last: |
|
for m in self.modules(): |
|
if hasattr(m, 'zero_init_last'): |
|
m.zero_init_last() |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict(stem=r'^conv1|bn1|maxpool', blocks=r'^layer(\d+)' if coarse else r'^layer(\d+)\.(\d+)') |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self, name_only=False): |
|
return 'fc' if name_only else self.fc |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.num_classes = num_classes |
|
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
def forward_features(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.act1(x) |
|
x = self.maxpool(x) |
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq([self.layer1, self.layer2, self.layer3, self.layer4], x, flatten=True) |
|
else: |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
x = self.global_pool(x) |
|
if self.drop_rate: |
|
x = F.dropout(x, p=float(self.drop_rate), training=self.training) |
|
return x if pre_logits else self.fc(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
|
|
return x |
|
|
|
|
|
def _create_resnet(variant, pretrained=False, **kwargs): |
|
return build_model_with_cfg(ResNet, variant, pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def resnet10t(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-10-T model. |
|
""" |
|
model_args = dict(block=BasicBlock, layers=[1, 1, 1, 1], stem_width=32, stem_type='deep_tiered', avg_down=True) |
|
return _create_resnet('resnet10t', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet14t(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-14-T model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[1, 1, 1, 1], stem_width=32, stem_type='deep_tiered', avg_down=True) |
|
return _create_resnet('resnet14t', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet18(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-18 model. |
|
""" |
|
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2]) |
|
return _create_resnet('resnet18', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet18d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-18-D model. |
|
""" |
|
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnet18d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet34(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-34 model. |
|
""" |
|
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3]) |
|
return _create_resnet('resnet34', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet34d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-34-D model. |
|
""" |
|
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnet34d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet26(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-26 model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2]) |
|
return _create_resnet('resnet26', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet26t(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-26-T model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep_tiered', avg_down=True) |
|
return _create_resnet('resnet26t', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet26d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-26-D model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnet26d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet50(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50 model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) |
|
return _create_resnet('resnet50', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet50d(pretrained=False, **kwargs) -> ResNet: |
|
"""Constructs a ResNet-50-D model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnet50d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet50t(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50-T model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered', avg_down=True) |
|
return _create_resnet('resnet50t', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet101(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-101 model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3]) |
|
return _create_resnet('resnet101', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet101d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-101-D model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnet101d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet152(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-152 model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3]) |
|
return _create_resnet('resnet152', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet152d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-152-D model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnet152d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet200(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-200 model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 24, 36, 3]) |
|
return _create_resnet('resnet200', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet200d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-200-D model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnet200d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def tv_resnet34(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-34 model with original Torchvision weights. |
|
""" |
|
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3]) |
|
return _create_resnet('tv_resnet34', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def tv_resnet50(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50 model with original Torchvision weights. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) |
|
return _create_resnet('tv_resnet50', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def tv_resnet101(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-101 model w/ Torchvision pretrained weights. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3]) |
|
return _create_resnet('tv_resnet101', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def tv_resnet152(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-152 model w/ Torchvision pretrained weights. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3]) |
|
return _create_resnet('tv_resnet152', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def wide_resnet50_2(pretrained=False, **kwargs): |
|
"""Constructs a Wide ResNet-50-2 model. |
|
The model is the same as ResNet except for the bottleneck number of channels |
|
which is twice larger in every block. The number of channels in outer 1x1 |
|
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 |
|
channels, and in Wide ResNet-50-2 has 2048-1024-2048. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], base_width=128) |
|
return _create_resnet('wide_resnet50_2', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def wide_resnet101_2(pretrained=False, **kwargs): |
|
"""Constructs a Wide ResNet-101-2 model. |
|
The model is the same as ResNet except for the bottleneck number of channels |
|
which is twice larger in every block. The number of channels in outer 1x1 |
|
convolutions is the same. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], base_width=128) |
|
return _create_resnet('wide_resnet101_2', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnet50_gn(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50 model w/ GroupNorm |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) |
|
return _create_resnet('resnet50_gn', pretrained, norm_layer=GroupNorm, **model_args) |
|
|
|
|
|
@register_model |
|
def resnext50_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a ResNeXt50-32x4d model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4) |
|
return _create_resnet('resnext50_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnext50d_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a ResNeXt50d-32x4d model. ResNext50 w/ deep stem & avg pool downsample |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, |
|
stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnext50d_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnext101_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a ResNeXt-101 32x4d model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4) |
|
return _create_resnet('resnext101_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnext101_32x8d(pretrained=False, **kwargs): |
|
"""Constructs a ResNeXt-101 32x8d model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8) |
|
return _create_resnet('resnext101_32x8d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnext101_64x4d(pretrained=False, **kwargs): |
|
"""Constructs a ResNeXt101-64x4d model. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=64, base_width=4) |
|
return _create_resnet('resnext101_64x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def tv_resnext50_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a ResNeXt50-32x4d model with original Torchvision weights. |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4) |
|
return _create_resnet('tv_resnext50_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ig_resnext101_32x8d(pretrained=False, **kwargs): |
|
"""Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data |
|
and finetuned on ImageNet from Figure 5 in |
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_ |
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8) |
|
return _create_resnet('ig_resnext101_32x8d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ig_resnext101_32x16d(pretrained=False, **kwargs): |
|
"""Constructs a ResNeXt-101 32x16 model pre-trained on weakly-supervised data |
|
and finetuned on ImageNet from Figure 5 in |
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_ |
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16) |
|
return _create_resnet('ig_resnext101_32x16d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ig_resnext101_32x32d(pretrained=False, **kwargs): |
|
"""Constructs a ResNeXt-101 32x32 model pre-trained on weakly-supervised data |
|
and finetuned on ImageNet from Figure 5 in |
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_ |
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=32) |
|
return _create_resnet('ig_resnext101_32x32d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ig_resnext101_32x48d(pretrained=False, **kwargs): |
|
"""Constructs a ResNeXt-101 32x48 model pre-trained on weakly-supervised data |
|
and finetuned on ImageNet from Figure 5 in |
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_ |
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=48) |
|
return _create_resnet('ig_resnext101_32x48d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ssl_resnet18(pretrained=False, **kwargs): |
|
"""Constructs a semi-supervised ResNet-18 model pre-trained on YFCC100M dataset and finetuned on ImageNet |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2]) |
|
return _create_resnet('ssl_resnet18', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ssl_resnet50(pretrained=False, **kwargs): |
|
"""Constructs a semi-supervised ResNet-50 model pre-trained on YFCC100M dataset and finetuned on ImageNet |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) |
|
return _create_resnet('ssl_resnet50', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ssl_resnext50_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a semi-supervised ResNeXt-50 32x4 model pre-trained on YFCC100M dataset and finetuned on ImageNet |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4) |
|
return _create_resnet('ssl_resnext50_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ssl_resnext101_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a semi-supervised ResNeXt-101 32x4 model pre-trained on YFCC100M dataset and finetuned on ImageNet |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4) |
|
return _create_resnet('ssl_resnext101_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ssl_resnext101_32x8d(pretrained=False, **kwargs): |
|
"""Constructs a semi-supervised ResNeXt-101 32x8 model pre-trained on YFCC100M dataset and finetuned on ImageNet |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8) |
|
return _create_resnet('ssl_resnext101_32x8d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ssl_resnext101_32x16d(pretrained=False, **kwargs): |
|
"""Constructs a semi-supervised ResNeXt-101 32x16 model pre-trained on YFCC100M dataset and finetuned on ImageNet |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16) |
|
return _create_resnet('ssl_resnext101_32x16d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swsl_resnet18(pretrained=False, **kwargs): |
|
"""Constructs a semi-weakly supervised Resnet-18 model pre-trained on 1B weakly supervised |
|
image dataset and finetuned on ImageNet. |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2]) |
|
return _create_resnet('swsl_resnet18', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swsl_resnet50(pretrained=False, **kwargs): |
|
"""Constructs a semi-weakly supervised ResNet-50 model pre-trained on 1B weakly supervised |
|
image dataset and finetuned on ImageNet. |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) |
|
return _create_resnet('swsl_resnet50', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swsl_resnext50_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a semi-weakly supervised ResNeXt-50 32x4 model pre-trained on 1B weakly supervised |
|
image dataset and finetuned on ImageNet. |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4) |
|
return _create_resnet('swsl_resnext50_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swsl_resnext101_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a semi-weakly supervised ResNeXt-101 32x4 model pre-trained on 1B weakly supervised |
|
image dataset and finetuned on ImageNet. |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4) |
|
return _create_resnet('swsl_resnext101_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swsl_resnext101_32x8d(pretrained=False, **kwargs): |
|
"""Constructs a semi-weakly supervised ResNeXt-101 32x8 model pre-trained on 1B weakly supervised |
|
image dataset and finetuned on ImageNet. |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8) |
|
return _create_resnet('swsl_resnext101_32x8d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swsl_resnext101_32x16d(pretrained=False, **kwargs): |
|
"""Constructs a semi-weakly supervised ResNeXt-101 32x16 model pre-trained on 1B weakly supervised |
|
image dataset and finetuned on ImageNet. |
|
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ |
|
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16) |
|
return _create_resnet('swsl_resnext101_32x16d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnet26t(pretrained=False, **kwargs): |
|
"""Constructs an ECA-ResNeXt-26-T model. |
|
This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels |
|
in the deep stem and ECA attn. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, |
|
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnet26t', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnet50d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50-D model with eca. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, |
|
block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnet50d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnet50d_pruned(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50-D model pruned with eca. |
|
The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, |
|
block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnet50d_pruned', pretrained, pruned=True, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnet50t(pretrained=False, **kwargs): |
|
"""Constructs an ECA-ResNet-50-T model. |
|
Like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels in the deep stem and ECA attn. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, |
|
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnet50t', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnetlight(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50-D light model with eca. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[1, 1, 11, 3], stem_width=32, avg_down=True, |
|
block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnetlight', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnet101d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-101-D model with eca. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, |
|
block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnet101d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnet101d_pruned(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-101-D model pruned with eca. |
|
The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, |
|
block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnet101d_pruned', pretrained, pruned=True, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnet200d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-200-D model with ECA. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, |
|
block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnet200d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnet269d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-269-D model with ECA. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 30, 48, 8], stem_width=32, stem_type='deep', avg_down=True, |
|
block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnet269d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnext26t_32x4d(pretrained=False, **kwargs): |
|
"""Constructs an ECA-ResNeXt-26-T model. |
|
This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels |
|
in the deep stem. This model replaces SE module with the ECA module |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, |
|
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnext26t_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def ecaresnext50t_32x4d(pretrained=False, **kwargs): |
|
"""Constructs an ECA-ResNeXt-50-T model. |
|
This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels |
|
in the deep stem. This model replaces SE module with the ECA module |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, |
|
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) |
|
return _create_resnet('ecaresnext50t_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnet18(pretrained=False, **kwargs): |
|
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnet18', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnet34(pretrained=False, **kwargs): |
|
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnet34', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnet50(pretrained=False, **kwargs): |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnet50', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnet50t(pretrained=False, **kwargs): |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered', |
|
avg_down=True, block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnet50t', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnet101(pretrained=False, **kwargs): |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnet101', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnet152(pretrained=False, **kwargs): |
|
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnet152', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnet152d(pretrained=False, **kwargs): |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', |
|
avg_down=True, block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnet152d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnet200d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-200-D model with SE attn. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', |
|
avg_down=True, block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnet200d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnet269d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-269-D model with SE attn. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 30, 48, 8], stem_width=32, stem_type='deep', |
|
avg_down=True, block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnet269d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnext26d_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a SE-ResNeXt-26-D model.` |
|
This is technically a 28 layer ResNet, using the 'D' modifier from Gluon / bag-of-tricks for |
|
combination of deep stem and avg_pool in downsample. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, |
|
stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnext26d_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnext26t_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a SE-ResNet-26-T model. |
|
This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels |
|
in the deep stem. |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, |
|
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnext26t_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnext26tn_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a SE-ResNeXt-26-T model. |
|
NOTE I deprecated previous 't' model defs and replaced 't' with 'tn', this was the only tn model of note |
|
so keeping this def for backwards compat with any uses out there. Old 't' model is lost. |
|
""" |
|
return seresnext26t_32x4d(pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def seresnext50_32x4d(pretrained=False, **kwargs): |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, |
|
block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnext50_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnext101_32x4d(pretrained=False, **kwargs): |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4, |
|
block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnext101_32x4d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnext101_32x8d(pretrained=False, **kwargs): |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, |
|
block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnext101_32x8d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnext101d_32x8d(pretrained=False, **kwargs): |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, |
|
stem_width=32, stem_type='deep', avg_down=True, |
|
block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnext101d_32x8d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def senet154(pretrained=False, **kwargs): |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 8, 36, 3], cardinality=64, base_width=4, stem_type='deep', |
|
down_kernel_size=3, block_reduce_first=2, block_args=dict(attn_layer='se')) |
|
return _create_resnet('senet154', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetblur18(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-18 model with blur anti-aliasing |
|
""" |
|
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], aa_layer=BlurPool2d) |
|
return _create_resnet('resnetblur18', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetblur50(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50 model with blur anti-aliasing |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=BlurPool2d) |
|
return _create_resnet('resnetblur50', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetblur50d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50-D model with blur anti-aliasing |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=BlurPool2d, |
|
stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnetblur50d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetblur101d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-101-D model with blur anti-aliasing |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 23, 3], aa_layer=BlurPool2d, |
|
stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnetblur101d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetaa34d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-34-D model w/ avgpool anti-aliasing |
|
""" |
|
model_args = dict( |
|
block=BasicBlock, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnetaa34d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetaa50(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50 model with avgpool anti-aliasing |
|
""" |
|
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d) |
|
return _create_resnet('resnetaa50', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetaa50d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50-D model with avgpool anti-aliasing |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, |
|
stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnetaa50d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetaa101d(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-101-D model with avgpool anti-aliasing |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 23, 3], aa_layer=nn.AvgPool2d, |
|
stem_width=32, stem_type='deep', avg_down=True) |
|
return _create_resnet('resnetaa101d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnetaa50d(pretrained=False, **kwargs): |
|
"""Constructs a SE=ResNet-50-D model with avgpool anti-aliasing |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, |
|
stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnetaa50d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def seresnextaa101d_32x8d(pretrained=False, **kwargs): |
|
"""Constructs a SE=ResNeXt-101-D 32x8d model with avgpool anti-aliasing |
|
""" |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, |
|
stem_width=32, stem_type='deep', avg_down=True, aa_layer=nn.AvgPool2d, |
|
block_args=dict(attn_layer='se')) |
|
return _create_resnet('seresnextaa101d_32x8d', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetrs50(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-RS-50 model. |
|
Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 |
|
Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs |
|
""" |
|
attn_layer = partial(get_attn('se'), rd_ratio=0.25) |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, |
|
avg_down=True, block_args=dict(attn_layer=attn_layer)) |
|
return _create_resnet('resnetrs50', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetrs101(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-RS-101 model. |
|
Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 |
|
Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs |
|
""" |
|
attn_layer = partial(get_attn('se'), rd_ratio=0.25) |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, |
|
avg_down=True, block_args=dict(attn_layer=attn_layer)) |
|
return _create_resnet('resnetrs101', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetrs152(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-RS-152 model. |
|
Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 |
|
Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs |
|
""" |
|
attn_layer = partial(get_attn('se'), rd_ratio=0.25) |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, |
|
avg_down=True, block_args=dict(attn_layer=attn_layer)) |
|
return _create_resnet('resnetrs152', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetrs200(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-RS-200 model. |
|
Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 |
|
Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs |
|
""" |
|
attn_layer = partial(get_attn('se'), rd_ratio=0.25) |
|
model_args = dict( |
|
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, |
|
avg_down=True, block_args=dict(attn_layer=attn_layer)) |
|
return _create_resnet('resnetrs200', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetrs270(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-RS-270 model. |
|
Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 |
|
Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs |
|
""" |
|
attn_layer = partial(get_attn('se'), rd_ratio=0.25) |
|
model_args = dict( |
|
block=Bottleneck, layers=[4, 29, 53, 4], stem_width=32, stem_type='deep', replace_stem_pool=True, |
|
avg_down=True, block_args=dict(attn_layer=attn_layer)) |
|
return _create_resnet('resnetrs270', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
|
|
@register_model |
|
def resnetrs350(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-RS-350 model. |
|
Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 |
|
Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs |
|
""" |
|
attn_layer = partial(get_attn('se'), rd_ratio=0.25) |
|
model_args = dict( |
|
block=Bottleneck, layers=[4, 36, 72, 4], stem_width=32, stem_type='deep', replace_stem_pool=True, |
|
avg_down=True, block_args=dict(attn_layer=attn_layer)) |
|
return _create_resnet('resnetrs350', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def resnetrs420(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-RS-420 model |
|
Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 |
|
Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs |
|
""" |
|
attn_layer = partial(get_attn('se'), rd_ratio=0.25) |
|
model_args = dict( |
|
block=Bottleneck, layers=[4, 44, 87, 4], stem_width=32, stem_type='deep', replace_stem_pool=True, |
|
avg_down=True, block_args=dict(attn_layer=attn_layer)) |
|
return _create_resnet('resnetrs420', pretrained, **dict(model_args, **kwargs)) |
|
|