|
""" from https://github.com/keithito/tacotron """ |
|
import numpy as np |
|
import re |
|
from . import cleaners |
|
from .symbols import symbols |
|
|
|
|
|
|
|
_symbol_to_id = {s: i for i, s in enumerate(symbols)} |
|
_id_to_symbol = {i: s for i, s in enumerate(symbols)} |
|
|
|
|
|
_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)') |
|
|
|
|
|
SOS_TOK = '<s>' |
|
EOS_TOK = '</s>' |
|
|
|
def text_to_sequence(text, cleaner_names): |
|
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. |
|
|
|
The text can optionally have ARPAbet sequences enclosed in curly braces embedded |
|
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street." |
|
|
|
Args: |
|
text: string to convert to a sequence |
|
cleaner_names: names of the cleaner functions to run the text through |
|
|
|
Returns: |
|
List of integers corresponding to the symbols in the text |
|
''' |
|
sequence = [] |
|
|
|
|
|
while len(text): |
|
m = _curly_re.match(text) |
|
if not m: |
|
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names)) |
|
break |
|
sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names)) |
|
sequence += _arpabet_to_sequence(m.group(2)) |
|
text = m.group(3) |
|
|
|
return sequence |
|
|
|
|
|
def sample_code_chunk(code, size): |
|
assert(size > 0 and size <= len(code)) |
|
start = np.random.randint(len(code) - size + 1) |
|
end = start + size |
|
return code[start:end], start, end |
|
|
|
|
|
def code_to_sequence(code, code_dict, collapse_code): |
|
if collapse_code: |
|
prev_c = None |
|
sequence = [] |
|
for c in code: |
|
if c in code_dict and c != prev_c: |
|
sequence.append(code_dict[c]) |
|
prev_c = c |
|
else: |
|
sequence = [code_dict[c] for c in code if c in code_dict] |
|
if len(sequence) < 0.95 * len(code): |
|
print('WARNING : over 5%% codes are OOV') |
|
|
|
return sequence |
|
|
|
|
|
def sequence_to_text(sequence): |
|
'''Converts a sequence of IDs back to a string''' |
|
result = '' |
|
for symbol_id in sequence: |
|
if symbol_id in _id_to_symbol: |
|
s = _id_to_symbol[symbol_id] |
|
|
|
if len(s) > 1 and s[0] == '@': |
|
s = '{%s}' % s[1:] |
|
result += s |
|
return result.replace('}{', ' ') |
|
|
|
|
|
def sequence_to_code(sequence, code_dict): |
|
'''Analogous to sequence_to_text''' |
|
id_to_code = {i: c for c, i in code_dict.items()} |
|
return ' '.join([id_to_code[i] for i in sequence]) |
|
|
|
|
|
def _clean_text(text, cleaner_names): |
|
for name in cleaner_names: |
|
cleaner = getattr(cleaners, name) |
|
if not cleaner: |
|
raise Exception('Unknown cleaner: %s' % name) |
|
text = cleaner(text) |
|
return text |
|
|
|
|
|
def _symbols_to_sequence(symbols): |
|
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)] |
|
|
|
|
|
def _arpabet_to_sequence(text): |
|
return _symbols_to_sequence(['@' + s for s in text.split()]) |
|
|
|
|
|
def _should_keep_symbol(s): |
|
return s in _symbol_to_id and s != '_' and s != '~' |
|
|