|
|
|
|
|
|
|
|
|
|
|
import random |
|
|
|
import torch |
|
import torchvision.transforms as T |
|
import torchvision.transforms.functional as F |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
def crop(image, target, region, delete=True): |
|
cropped_image = F.crop(image, *region) |
|
|
|
target = target.copy() |
|
i, j, h, w = region |
|
|
|
|
|
target["size"] = torch.tensor([h, w]) |
|
|
|
fields = ["labels", "area"] |
|
|
|
if "boxes" in target: |
|
boxes = target["boxes"] |
|
max_size = torch.as_tensor([w, h], dtype=torch.float32) |
|
cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) |
|
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) |
|
cropped_boxes = cropped_boxes.clamp(min=0) |
|
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) |
|
target["boxes"] = cropped_boxes.reshape(-1, 4) |
|
target["area"] = area |
|
fields.append("boxes") |
|
|
|
if "polygons" in target: |
|
polygons = target["polygons"] |
|
num_polygons = polygons.shape[0] |
|
max_size = torch.as_tensor([w, h], dtype=torch.float32) |
|
start_coord = torch.cat([torch.tensor([j, i], dtype=torch.float32) |
|
for _ in range(polygons.shape[1] // 2)], dim=0) |
|
cropped_boxes = polygons - start_coord |
|
cropped_boxes = torch.min(cropped_boxes.reshape(num_polygons, -1, 2), max_size) |
|
cropped_boxes = cropped_boxes.clamp(min=0) |
|
target["polygons"] = cropped_boxes.reshape(num_polygons, -1) |
|
fields.append("polygons") |
|
|
|
if "masks" in target: |
|
|
|
target['masks'] = target['masks'][:, i:i + h, j:j + w] |
|
fields.append("masks") |
|
|
|
|
|
if delete and ("boxes" in target or "masks" in target): |
|
|
|
|
|
if "boxes" in target: |
|
cropped_boxes = target['boxes'].reshape(-1, 2, 2) |
|
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) |
|
else: |
|
keep = target['masks'].flatten(1).any(1) |
|
|
|
for field in fields: |
|
target[field] = target[field][keep.tolist()] |
|
|
|
return cropped_image, target |
|
|
|
|
|
def hflip(image, target): |
|
flipped_image = F.hflip(image) |
|
|
|
w, h = image.size |
|
|
|
target = target.copy() |
|
if "boxes" in target: |
|
boxes = target["boxes"] |
|
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) |
|
target["boxes"] = boxes |
|
|
|
if "polygons" in target: |
|
polygons = target["polygons"] |
|
num_polygons = polygons.shape[0] |
|
polygons = polygons.reshape(num_polygons, -1, 2) * torch.as_tensor([-1, 1]) + torch.as_tensor([w, 0]) |
|
target["polygons"] = polygons |
|
|
|
if "masks" in target: |
|
target['masks'] = target['masks'].flip(-1) |
|
|
|
return flipped_image, target |
|
|
|
|
|
def resize(image, target, size, max_size=None): |
|
|
|
|
|
def get_size_with_aspect_ratio(image_size, size, max_size=None): |
|
w, h = image_size |
|
|
|
if (w <= h and w == size) or (h <= w and h == size): |
|
if max_size is not None: |
|
max_size = int(max_size) |
|
h = min(h, max_size) |
|
w = min(w, max_size) |
|
return (h, w) |
|
|
|
if w < h: |
|
ow = size |
|
oh = int(size * h / w) |
|
else: |
|
oh = size |
|
ow = int(size * w / h) |
|
|
|
if max_size is not None: |
|
max_size = int(max_size) |
|
oh = min(oh, max_size) |
|
ow = min(ow, max_size) |
|
|
|
return (oh, ow) |
|
|
|
def get_size(image_size, size, max_size=None): |
|
if isinstance(size, (list, tuple)): |
|
return size[::-1] |
|
else: |
|
return get_size_with_aspect_ratio(image_size, size, max_size) |
|
|
|
size = get_size(image.size, size, max_size) |
|
rescaled_image = F.resize(image, size, interpolation=Image.BICUBIC) |
|
|
|
if target is None: |
|
return rescaled_image |
|
|
|
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) |
|
ratio_width, ratio_height = ratios |
|
|
|
target = target.copy() |
|
if "boxes" in target: |
|
boxes = target["boxes"] |
|
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) |
|
target["boxes"] = scaled_boxes |
|
|
|
if "polygons" in target: |
|
polygons = target["polygons"] |
|
scaled_ratio = torch.cat([torch.tensor([ratio_width, ratio_height]) |
|
for _ in range(polygons.shape[1] // 2)], dim=0) |
|
scaled_polygons = polygons * scaled_ratio |
|
target["polygons"] = scaled_polygons |
|
|
|
if "area" in target: |
|
area = target["area"] |
|
scaled_area = area * (ratio_width * ratio_height) |
|
target["area"] = scaled_area |
|
|
|
h, w = size |
|
target["size"] = torch.tensor([h, w]) |
|
|
|
if "masks" in target: |
|
assert False |
|
|
|
|
|
|
|
return rescaled_image, target |
|
|
|
|
|
class CenterCrop(object): |
|
def __init__(self, size): |
|
self.size = size |
|
|
|
def __call__(self, img, target): |
|
image_width, image_height = img.size |
|
crop_height, crop_width = self.size |
|
crop_top = int(round((image_height - crop_height) / 2.)) |
|
crop_left = int(round((image_width - crop_width) / 2.)) |
|
return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) |
|
|
|
|
|
class ObjectCenterCrop(object): |
|
def __init__(self, size): |
|
self.size = size |
|
|
|
def __call__(self, img, target): |
|
image_width, image_height = img.size |
|
crop_height, crop_width = self.size |
|
|
|
x0 = float(target['boxes'][0][0]) |
|
y0 = float(target['boxes'][0][1]) |
|
x1 = float(target['boxes'][0][2]) |
|
y1 = float(target['boxes'][0][3]) |
|
|
|
center_x = (x0 + x1) / 2 |
|
center_y = (y0 + y1) / 2 |
|
crop_left = max(center_x-crop_width/2 + min(image_width-center_x-crop_width/2, 0), 0) |
|
crop_top = max(center_y-crop_height/2 + min(image_height-center_y-crop_height/2, 0), 0) |
|
|
|
return crop(img, target, (crop_top, crop_left, crop_height, crop_width), delete=False) |
|
|
|
|
|
class RandomHorizontalFlip(object): |
|
def __init__(self, p=0.5): |
|
self.p = p |
|
|
|
def __call__(self, img, target): |
|
if random.random() < self.p: |
|
return hflip(img, target) |
|
return img, target |
|
|
|
|
|
class RandomResize(object): |
|
def __init__(self, sizes, max_size=None, equal=False): |
|
assert isinstance(sizes, (list, tuple)) |
|
self.sizes = sizes |
|
self.max_size = max_size |
|
self.equal = equal |
|
|
|
def __call__(self, img, target=None): |
|
size = random.choice(self.sizes) |
|
if self.equal: |
|
return resize(img, target, size, size) |
|
else: |
|
return resize(img, target, size, self.max_size) |
|
|
|
|
|
class ToTensor(object): |
|
def __call__(self, img, target): |
|
return F.to_tensor(img), target |
|
|
|
|
|
class Normalize(object): |
|
def __init__(self, mean, std, max_image_size=512): |
|
self.mean = mean |
|
self.std = std |
|
self.max_image_size = max_image_size |
|
|
|
def __call__(self, image, target=None): |
|
image = F.normalize(image, mean=self.mean, std=self.std) |
|
if target is None: |
|
return image, None |
|
target = target.copy() |
|
|
|
h, w = target["size"][0], target["size"][1] |
|
if "boxes" in target: |
|
boxes = target["boxes"] |
|
boxes = boxes / self.max_image_size |
|
target["boxes"] = boxes |
|
if "polygons" in target: |
|
polygons = target["polygons"] |
|
scale = torch.cat([torch.tensor([w, h], dtype=torch.float32) |
|
for _ in range(polygons.shape[1] // 2)], dim=0) |
|
polygons = polygons / scale |
|
target["polygons"] = polygons |
|
return image, target |
|
|
|
|
|
class Compose(object): |
|
def __init__(self, transforms): |
|
self.transforms = transforms |
|
|
|
def __call__(self, image, target): |
|
for t in self.transforms: |
|
image, target = t(image, target) |
|
return image, target |
|
|
|
def __repr__(self): |
|
format_string = self.__class__.__name__ + "(" |
|
for t in self.transforms: |
|
format_string += "\n" |
|
format_string += " {0}".format(t) |
|
format_string += "\n)" |
|
return format_string |
|
|
|
|
|
class LargeScaleJitter(object): |
|
""" |
|
implementation of large scale jitter from copy_paste |
|
""" |
|
|
|
def __init__(self, output_size=512, aug_scale_min=0.3, aug_scale_max=2.0): |
|
self.desired_size = torch.tensor([output_size]) |
|
self.aug_scale_min = aug_scale_min |
|
self.aug_scale_max = aug_scale_max |
|
|
|
def rescale_target(self, scaled_size, image_size, target): |
|
|
|
image_scale = scaled_size / image_size |
|
ratio_height, ratio_width = image_scale |
|
|
|
target = target.copy() |
|
target["size"] = scaled_size |
|
|
|
if "boxes" in target: |
|
boxes = target["boxes"] |
|
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) |
|
target["boxes"] = scaled_boxes |
|
|
|
if "area" in target: |
|
area = target["area"] |
|
scaled_area = area * (ratio_width * ratio_height) |
|
target["area"] = scaled_area |
|
|
|
if "masks" in target: |
|
assert False |
|
masks = target['masks'] |
|
|
|
|
|
target['masks'] = masks |
|
return target |
|
|
|
def crop_target(self, region, target): |
|
i, j, h, w = region |
|
fields = ["labels", "area"] |
|
|
|
target = target.copy() |
|
target["size"] = torch.tensor([h, w]) |
|
|
|
if "boxes" in target: |
|
boxes = target["boxes"] |
|
max_size = torch.as_tensor([w, h], dtype=torch.float32) |
|
cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) |
|
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) |
|
cropped_boxes = cropped_boxes.clamp(min=0) |
|
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) |
|
target["boxes"] = cropped_boxes.reshape(-1, 4) |
|
target["area"] = area |
|
fields.append("boxes") |
|
|
|
if "masks" in target: |
|
|
|
target['masks'] = target['masks'][:, i:i + h, j:j + w] |
|
fields.append("masks") |
|
|
|
|
|
if "boxes" in target or "masks" in target: |
|
|
|
|
|
if "boxes" in target: |
|
cropped_boxes = target['boxes'].reshape(-1, 2, 2) |
|
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) |
|
else: |
|
keep = target['masks'].flatten(1).any(1) |
|
|
|
for field in fields: |
|
target[field] = target[field][keep.tolist()] |
|
return target |
|
|
|
def pad_target(self, padding, target): |
|
target = target.copy() |
|
if "masks" in target: |
|
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[1], 0, padding[0])) |
|
return target |
|
|
|
def __call__(self, image, target=None): |
|
image_size = image.size |
|
image_size = torch.tensor(image_size[::-1]) |
|
|
|
random_scale = torch.rand(1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min |
|
scaled_size = (random_scale * self.desired_size).round() |
|
|
|
scale = torch.maximum(scaled_size / image_size[0], scaled_size / image_size[1]) |
|
scaled_size = (image_size * scale).round().int() |
|
|
|
scaled_image = F.resize(image, scaled_size.tolist(), interpolation=Image.BICUBIC) |
|
|
|
if target is not None: |
|
target = self.rescale_target(scaled_size, image_size, target) |
|
|
|
|
|
if random_scale >= 1: |
|
|
|
max_offset = scaled_size - self.desired_size |
|
offset = (max_offset * torch.rand(2)).floor().int() |
|
region = (offset[0].item(), offset[1].item(), |
|
self.desired_size[0].item(), self.desired_size[0].item()) |
|
output_image = F.crop(scaled_image, *region) |
|
if target is not None: |
|
target = self.crop_target(region, target) |
|
else: |
|
assert False |
|
padding = self.desired_size - scaled_size |
|
output_image = F.pad(scaled_image, [0, 0, padding[1].item(), padding[0].item()]) |
|
if target is not None: |
|
target = self.pad_target(padding, target) |
|
|
|
return output_image, target |
|
|
|
|
|
class OriginLargeScaleJitter(object): |
|
""" |
|
implementation of large scale jitter from copy_paste |
|
""" |
|
|
|
def __init__(self, output_size=512, aug_scale_min=0.3, aug_scale_max=2.0): |
|
self.desired_size = torch.tensor(output_size) |
|
self.aug_scale_min = aug_scale_min |
|
self.aug_scale_max = aug_scale_max |
|
|
|
def rescale_target(self, scaled_size, image_size, target): |
|
|
|
image_scale = scaled_size / image_size |
|
ratio_height, ratio_width = image_scale |
|
|
|
target = target.copy() |
|
target["size"] = scaled_size |
|
|
|
if "boxes" in target: |
|
boxes = target["boxes"] |
|
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) |
|
target["boxes"] = scaled_boxes |
|
|
|
if "area" in target: |
|
area = target["area"] |
|
scaled_area = area * (ratio_width * ratio_height) |
|
target["area"] = scaled_area |
|
|
|
if "masks" in target: |
|
assert False |
|
masks = target['masks'] |
|
|
|
|
|
target['masks'] = masks |
|
return target |
|
|
|
def crop_target(self, region, target): |
|
i, j, h, w = region |
|
fields = ["labels", "area"] |
|
|
|
target = target.copy() |
|
target["size"] = torch.tensor([h, w]) |
|
|
|
if "boxes" in target: |
|
boxes = target["boxes"] |
|
max_size = torch.as_tensor([w, h], dtype=torch.float32) |
|
cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) |
|
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) |
|
cropped_boxes = cropped_boxes.clamp(min=0) |
|
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) |
|
target["boxes"] = cropped_boxes.reshape(-1, 4) |
|
target["area"] = area |
|
fields.append("boxes") |
|
|
|
if "masks" in target: |
|
|
|
target['masks'] = target['masks'][:, i:i + h, j:j + w] |
|
fields.append("masks") |
|
|
|
|
|
if "boxes" in target or "masks" in target: |
|
|
|
|
|
if "boxes" in target: |
|
cropped_boxes = target['boxes'].reshape(-1, 2, 2) |
|
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) |
|
else: |
|
keep = target['masks'].flatten(1).any(1) |
|
|
|
for field in fields: |
|
target[field] = target[field][keep.tolist()] |
|
return target |
|
|
|
def pad_target(self, padding, target): |
|
target = target.copy() |
|
if "masks" in target: |
|
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[1], 0, padding[0])) |
|
return target |
|
|
|
def __call__(self, image, target=None): |
|
image_size = image.size |
|
image_size = torch.tensor(image_size[::-1]) |
|
|
|
out_desired_size = (self.desired_size * image_size / max(image_size)).round().int() |
|
|
|
random_scale = torch.rand(1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min |
|
scaled_size = (random_scale * self.desired_size).round() |
|
|
|
scale = torch.minimum(scaled_size / image_size[0], scaled_size / image_size[1]) |
|
scaled_size = (image_size * scale).round().int() |
|
|
|
scaled_image = F.resize(image, scaled_size.tolist()) |
|
|
|
if target is not None: |
|
target = self.rescale_target(scaled_size, image_size, target) |
|
|
|
|
|
if random_scale > 1: |
|
|
|
max_offset = scaled_size - out_desired_size |
|
offset = (max_offset * torch.rand(2)).floor().int() |
|
region = (offset[0].item(), offset[1].item(), |
|
out_desired_size[0].item(), out_desired_size[1].item()) |
|
output_image = F.crop(scaled_image, *region) |
|
if target is not None: |
|
target = self.crop_target(region, target) |
|
else: |
|
padding = out_desired_size - scaled_size |
|
output_image = F.pad(scaled_image, [0, 0, padding[1].item(), padding[0].item()]) |
|
if target is not None: |
|
target = self.pad_target(padding, target) |
|
|
|
return output_image, target |
|
|
|
|
|
class RandomDistortion(object): |
|
""" |
|
Distort image w.r.t hue, saturation and exposure. |
|
""" |
|
|
|
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, prob=0.5): |
|
self.prob = prob |
|
self.tfm = T.ColorJitter(brightness, contrast, saturation, hue) |
|
|
|
def __call__(self, img, target=None): |
|
if np.random.random() < self.prob: |
|
return self.tfm(img), target |
|
else: |
|
return img, target |
|
|