Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,12 @@ from tasks.mm_tasks.caption import CaptionTask
|
|
19 |
from tasks.mm_tasks.refcoco import RefcocoTask
|
20 |
from tasks.mm_tasks.vqa_gen import VqaGenTask
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def move2gpu(models, cfg):
|
24 |
for model in models:
|
@@ -48,6 +54,10 @@ def construct_transform(patch_image_size):
|
|
48 |
tasks.register_task('caption', CaptionTask)
|
49 |
tasks.register_task('refcoco', RefcocoTask)
|
50 |
tasks.register_task('vqa_gen', VqaGenTask)
|
|
|
|
|
|
|
|
|
51 |
# turn on cuda if GPU is available
|
52 |
use_cuda = torch.cuda.is_available()
|
53 |
# use fp16 only when GPU is available
|
@@ -56,16 +66,19 @@ use_fp16 = False
|
|
56 |
# download checkpoints
|
57 |
os.system('mkdir -p checkpoints; ')
|
58 |
|
59 |
-
os.system('wget https://data.isir.upmc.fr/unival/models/unival_s2_hs/checkpoint1.pt; '
|
60 |
-
|
61 |
|
62 |
os.system('wget https://data.isir.upmc.fr/unival/models/unival_vqa/checkpoint_best.pt; '
|
63 |
'mkdir -p checkpoints/unival_vqa; mv checkpoint_best.pt checkpoints/unival_vqa/')
|
64 |
-
os.system('wget https://data.isir.upmc.fr/unival/models/unival_caption_stage_1/checkpoint_best_test.pt; '
|
65 |
-
|
66 |
-
os.system('wget https://data.isir.upmc.fr/unival/models/unival_refcocog/checkpoint_best.pt; '
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
# Load ckpt & config for Image Captioning
|
71 |
checkpoint_path = 'checkpoints/unival_caption_stage_1/checkpoint_best_test.pt'
|
@@ -78,6 +91,29 @@ caption_models, caption_cfg, caption_task = checkpoint_utils.load_model_ensemble
|
|
78 |
arg_overrides=caption_overrides
|
79 |
)
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Load ckpt & config for Refcoco
|
82 |
checkpoint_path = 'checkpoints/unival_refcocog/checkpoint_best.pt'
|
83 |
|
@@ -132,6 +168,8 @@ move2gpu(caption_models, caption_cfg)
|
|
132 |
move2gpu(refcoco_models, refcoco_cfg)
|
133 |
move2gpu(vqa_models, vqa_cfg)
|
134 |
move2gpu(general_models, general_cfg)
|
|
|
|
|
135 |
|
136 |
# # Initialize generator
|
137 |
caption_generator = caption_task.build_generator(caption_models, caption_cfg.generation)
|
@@ -141,6 +179,9 @@ vqa_generator.zero_shot = True
|
|
141 |
vqa_generator.constraint_trie = None
|
142 |
general_generator = general_task.build_generator(general_models, general_cfg.generation)
|
143 |
|
|
|
|
|
|
|
144 |
# Construct image transforms
|
145 |
caption_transform = construct_transform(caption_cfg.task.patch_image_size)
|
146 |
refcoco_transform = construct_transform(refcoco_cfg.task.patch_image_size)
|
@@ -153,6 +194,111 @@ bos_item = torch.LongTensor([general_task.src_dict.bos()])
|
|
153 |
eos_item = torch.LongTensor([general_task.src_dict.eos()])
|
154 |
pad_idx = general_task.src_dict.pad()
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
def get_symbols_to_strip_from_output(generator):
|
158 |
if hasattr(generator, "symbols_to_strip_from_output"):
|
@@ -214,7 +360,7 @@ def encode_text(text, length=None, append_bos=False, append_eos=False):
|
|
214 |
s = torch.cat([s, eos_item])
|
215 |
return s
|
216 |
|
217 |
-
|
218 |
def construct_sample(image: Image, instruction: str, transform):
|
219 |
patch_image = transform(image).unsqueeze(0)
|
220 |
patch_mask = torch.tensor([True])
|
@@ -248,6 +394,18 @@ def inference(image, task_type, instruction):
|
|
248 |
instruction = 'what does the image describe?'
|
249 |
transform = caption_transform
|
250 |
cfg = caption_cfg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
elif task_type == 'Visual Question Answering':
|
252 |
task = vqa_task
|
253 |
models = vqa_models
|
@@ -267,11 +425,22 @@ def inference(image, task_type, instruction):
|
|
267 |
generator = general_generator
|
268 |
transform = general_transform
|
269 |
cfg = general_cfg
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
else:
|
271 |
raise NotImplementedError
|
272 |
|
273 |
# Construct input sample & preprocess for GPU if cuda available
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
275 |
sample = utils.move_to_cuda(sample) if use_cuda else sample
|
276 |
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
|
277 |
|
@@ -297,7 +466,7 @@ def inference(image, task_type, instruction):
|
|
297 |
else:
|
298 |
return None, tokens
|
299 |
|
300 |
-
inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning',"Visual Question Answering", "Visual Grounding", "General"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
|
301 |
outputs = [gr.outputs.Image(type='pil'), 'text']
|
302 |
examples = [
|
303 |
# ['examples/caption/soccer.jpg', 'Image Captioning', None],
|
|
|
19 |
from tasks.mm_tasks.refcoco import RefcocoTask
|
20 |
from tasks.mm_tasks.vqa_gen import VqaGenTask
|
21 |
|
22 |
+
# video
|
23 |
+
from data.video_utils import VIDEO_READER_FUNCS
|
24 |
+
|
25 |
+
# audio
|
26 |
+
import torchaudio
|
27 |
+
from data.audio_utils import get_audio_features, int16_to_float32, float32_to_int16, AUDIO_CFG
|
28 |
|
29 |
def move2gpu(models, cfg):
|
30 |
for model in models:
|
|
|
54 |
tasks.register_task('caption', CaptionTask)
|
55 |
tasks.register_task('refcoco', RefcocoTask)
|
56 |
tasks.register_task('vqa_gen', VqaGenTask)
|
57 |
+
tasks.register_task('video_caption', CaptionTask)
|
58 |
+
tasks.register_task('audio_caption', CaptionTask)
|
59 |
+
|
60 |
+
|
61 |
# turn on cuda if GPU is available
|
62 |
use_cuda = torch.cuda.is_available()
|
63 |
# use fp16 only when GPU is available
|
|
|
66 |
# download checkpoints
|
67 |
os.system('mkdir -p checkpoints; ')
|
68 |
|
69 |
+
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_s2_hs/checkpoint1.pt; '
|
70 |
+
# 'mkdir -p checkpoints/unival_s2_hs; mv checkpoint1.pt checkpoints/unival_s2_hs/')
|
71 |
|
72 |
os.system('wget https://data.isir.upmc.fr/unival/models/unival_vqa/checkpoint_best.pt; '
|
73 |
'mkdir -p checkpoints/unival_vqa; mv checkpoint_best.pt checkpoints/unival_vqa/')
|
74 |
+
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_caption_stage_1/checkpoint_best_test.pt; '
|
75 |
+
# 'mkdir -p checkpoints/unival_caption_stage_1; mv checkpoint_best_test.pt checkpoints/unival_caption_stage_1/')
|
76 |
+
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_refcocog/checkpoint_best.pt; '
|
77 |
+
# 'mkdir -p checkpoints/unival_refcocog; mv checkpoint_best.pt checkpoints/unival_refcocog/')
|
78 |
+
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_video_caption_stage_1/checkpoint_best.pt; '
|
79 |
+
# 'mkdir -p checkpoints/unival_video_caption_stage_1; mv checkpoint_best.pt checkpoints/unival_video_caption_stage_1/')
|
80 |
+
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_audio_caption/checkpoint_best.pt; '
|
81 |
+
# 'mkdir -p checkpoints/unival_audio_caption; mv checkpoint_best.pt checkpoints/unival_audio_caption/')
|
82 |
|
83 |
# Load ckpt & config for Image Captioning
|
84 |
checkpoint_path = 'checkpoints/unival_caption_stage_1/checkpoint_best_test.pt'
|
|
|
91 |
arg_overrides=caption_overrides
|
92 |
)
|
93 |
|
94 |
+
# Load ckpt & config for Video Captioning
|
95 |
+
checkpoint_path = 'checkpoints/unival_video_caption_stage_1/checkpoint_best.p'
|
96 |
+
|
97 |
+
caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
|
98 |
+
"bpe_dir":"utils/BPE", "video_model_path": None, "video_model_path": None, "resnet_model_path": None}
|
99 |
+
|
100 |
+
video_caption_models, video_caption_cfg, video_caption_task = checkpoint_utils.load_model_ensemble_and_task(
|
101 |
+
utils.split_paths(checkpoint_path),
|
102 |
+
arg_overrides=caption_overrides
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
# Load ckpt & config for Audio Captioning
|
107 |
+
checkpoint_path = 'checkpoints/unival_audio_caption/checkpoint_best.pt'
|
108 |
+
|
109 |
+
caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
|
110 |
+
"bpe_dir":"utils/BPE", "video_model_path": None, "video_model_path": None, "resnet_model_path": None, "audio_model_path": None}
|
111 |
+
|
112 |
+
audio_caption_models, audio_caption_cfg, audio_caption_task = checkpoint_utils.load_model_ensemble_and_task(
|
113 |
+
utils.split_paths(checkpoint_path),
|
114 |
+
arg_overrides=caption_overrides
|
115 |
+
)
|
116 |
+
|
117 |
# Load ckpt & config for Refcoco
|
118 |
checkpoint_path = 'checkpoints/unival_refcocog/checkpoint_best.pt'
|
119 |
|
|
|
168 |
move2gpu(refcoco_models, refcoco_cfg)
|
169 |
move2gpu(vqa_models, vqa_cfg)
|
170 |
move2gpu(general_models, general_cfg)
|
171 |
+
move2gpu(video_caption_models, general_cfg)
|
172 |
+
move2gpu(audio_general_models, general_cfg)
|
173 |
|
174 |
# # Initialize generator
|
175 |
caption_generator = caption_task.build_generator(caption_models, caption_cfg.generation)
|
|
|
179 |
vqa_generator.constraint_trie = None
|
180 |
general_generator = general_task.build_generator(general_models, general_cfg.generation)
|
181 |
|
182 |
+
video_caption_generator = caption_task.build_generator(video_caption_models, video_caption_cfg.generation)
|
183 |
+
audio_caption_generator = caption_task.build_generator(audio_caption_models, audio_caption_cfg.generation)
|
184 |
+
|
185 |
# Construct image transforms
|
186 |
caption_transform = construct_transform(caption_cfg.task.patch_image_size)
|
187 |
refcoco_transform = construct_transform(refcoco_cfg.task.patch_image_size)
|
|
|
194 |
eos_item = torch.LongTensor([general_task.src_dict.eos()])
|
195 |
pad_idx = general_task.src_dict.pad()
|
196 |
|
197 |
+
# Video process
|
198 |
+
|
199 |
+
type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
|
200 |
+
patch_video_resize_transform = transforms.Compose([
|
201 |
+
transforms.CenterCrop(cfg.task.patch_frame_size),
|
202 |
+
type_transform,
|
203 |
+
transforms.Normalize(mean=mean, std=std),
|
204 |
+
])
|
205 |
+
|
206 |
+
# video process
|
207 |
+
video_reader = VIDEO_READER_FUNCS['decord']
|
208 |
+
|
209 |
+
def process_video(video_path, max_num_frames=16, num_frames=16, sample_type='rand',):
|
210 |
+
|
211 |
+
# video
|
212 |
+
data_path = os.path.join(video_path)
|
213 |
+
|
214 |
+
frames, frame_indices, video_duration = video_reader(
|
215 |
+
data_path, num_frames, sample_type, max_num_frames=max_num_frames
|
216 |
+
)
|
217 |
+
|
218 |
+
patch_video = patch_video_resize_transform(frames)
|
219 |
+
patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)
|
220 |
+
|
221 |
+
return patch_video.unsqueeze(0)
|
222 |
+
|
223 |
+
def construct_video_sample(video_path):
|
224 |
+
|
225 |
+
patch_video = process_video(video_path, max_num_frames=16, num_frames=cfg.task.num_frames, sample_type=cfg.task.sample_type,)
|
226 |
+
patch_image = torch.zeros((3, cfg.task.patch_image_size, cfg.task.patch_image_size))
|
227 |
+
|
228 |
+
patch_type = torch.tensor([1])
|
229 |
+
patch_mask = torch.tensor([True])
|
230 |
+
src_text = encode_text(" what does the video describe?", append_bos=True, append_eos=True).unsqueeze(0)
|
231 |
+
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
|
232 |
+
sample = {
|
233 |
+
"id":np.array(['42']),
|
234 |
+
"net_input": {
|
235 |
+
"src_tokens": src_text,
|
236 |
+
"src_lengths": src_length,
|
237 |
+
"patch_videos": patch_video,
|
238 |
+
"patch_images": patch_image,
|
239 |
+
"patch_masks": patch_mask,
|
240 |
+
"patch_types": patch_type,
|
241 |
+
}
|
242 |
+
}
|
243 |
+
return sample
|
244 |
+
|
245 |
+
#####
|
246 |
+
|
247 |
+
# audio process
|
248 |
+
mean = [0.5, 0.5, 0.5]
|
249 |
+
std = [0.5, 0.5, 0.5]
|
250 |
+
|
251 |
+
|
252 |
+
def process_audio(audio_path, sample_rate=48000, max_audio_len=480000, audio_cfg=AUDIO_CFG):
|
253 |
+
|
254 |
+
# audio
|
255 |
+
data_path = audio_path
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
audio_data, orig_sr = torchaudio.load(data_path)
|
260 |
+
audio_data = torchaudio.transforms.Resample(orig_sr, sample_rate)(audio_data[0])
|
261 |
+
|
262 |
+
sample = {}
|
263 |
+
|
264 |
+
sample = get_audio_features(
|
265 |
+
sample, audio_data, max_audio_len,
|
266 |
+
data_truncating='rand_trunc',
|
267 |
+
data_filling='repeatpad',
|
268 |
+
audio_cfg=audio_cfg
|
269 |
+
)
|
270 |
+
|
271 |
+
|
272 |
+
waveform = sample['waveform']
|
273 |
+
patch_audio = waveform
|
274 |
+
|
275 |
+
return patch_audio.unsqueeze(0)
|
276 |
+
|
277 |
+
|
278 |
+
def construct_audio_sample(audio_path):
|
279 |
+
|
280 |
+
|
281 |
+
patch_audio = process_audio(audio_path, sample_rate=48000, max_audio_len=480000, audio_cfg=AUDIO_CFG)
|
282 |
+
patch_image = torch.zeros((3, cfg.task.patch_image_size, cfg.task.patch_image_size))
|
283 |
+
|
284 |
+
patch_type = torch.tensor([2])
|
285 |
+
patch_mask = torch.tensor([True])
|
286 |
+
src_text = encode_text(" what does the image describe?", append_bos=True, append_eos=True).unsqueeze(0)
|
287 |
+
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
|
288 |
+
sample = {
|
289 |
+
"id":np.array(['42']),
|
290 |
+
"net_input": {
|
291 |
+
"src_tokens": src_text,
|
292 |
+
"src_lengths": src_length,
|
293 |
+
"patch_images": patch_image,
|
294 |
+
"patch_audios": patch_audio,
|
295 |
+
"patch_masks": patch_mask,
|
296 |
+
"patch_types": patch_type,
|
297 |
+
}
|
298 |
+
}
|
299 |
+
return sample
|
300 |
+
|
301 |
+
#####
|
302 |
|
303 |
def get_symbols_to_strip_from_output(generator):
|
304 |
if hasattr(generator, "symbols_to_strip_from_output"):
|
|
|
360 |
s = torch.cat([s, eos_item])
|
361 |
return s
|
362 |
|
363 |
+
# image
|
364 |
def construct_sample(image: Image, instruction: str, transform):
|
365 |
patch_image = transform(image).unsqueeze(0)
|
366 |
patch_mask = torch.tensor([True])
|
|
|
394 |
instruction = 'what does the image describe?'
|
395 |
transform = caption_transform
|
396 |
cfg = caption_cfg
|
397 |
+
elif task_type == 'Video Captioning':
|
398 |
+
task = video_caption_task
|
399 |
+
models = video_caption_models
|
400 |
+
generator = video_caption_generator
|
401 |
+
instruction = 'what does the video describe?'
|
402 |
+
cfg = video_caption_cfg
|
403 |
+
elif task_type == 'Audio Captioning':
|
404 |
+
task = audio_caption_task
|
405 |
+
models = audio_caption_models
|
406 |
+
generator = audio_caption_generator
|
407 |
+
instruction = 'what does the audio describe?'
|
408 |
+
cfg = audio_caption_cfg
|
409 |
elif task_type == 'Visual Question Answering':
|
410 |
task = vqa_task
|
411 |
models = vqa_models
|
|
|
425 |
generator = general_generator
|
426 |
transform = general_transform
|
427 |
cfg = general_cfg
|
428 |
+
elif task_type == 'General Video':
|
429 |
+
task = video_general_task
|
430 |
+
models = video_general_models
|
431 |
+
generator = video_general_generator
|
432 |
+
transform = general_transform
|
433 |
+
cfg = video_general_cfg
|
434 |
else:
|
435 |
raise NotImplementedError
|
436 |
|
437 |
# Construct input sample & preprocess for GPU if cuda available
|
438 |
+
if "Video" in task_type:
|
439 |
+
sample = construct_video_sample(video)
|
440 |
+
elif "Audio" in task_type:
|
441 |
+
sample = construct_audio_sample(audio)
|
442 |
+
else:
|
443 |
+
sample = construct_sample(image, instruction, transform)
|
444 |
sample = utils.move_to_cuda(sample) if use_cuda else sample
|
445 |
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
|
446 |
|
|
|
466 |
else:
|
467 |
return None, tokens
|
468 |
|
469 |
+
inputs = [gr.inputs.Image(type='pil'), gr.Audio(source="upload", type="filepath"), gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Image Captioning', 'Video Captioning', 'Audio Captioning', "Visual Question Answering", "Visual Grounding", "General", "General Video"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
|
470 |
outputs = [gr.outputs.Image(type='pil'), 'text']
|
471 |
examples = [
|
472 |
# ['examples/caption/soccer.jpg', 'Image Captioning', None],
|