# Modified from OFA code. # Copyright 2022 The OFA-Sys Team. # All rights reserved. # This source code is licensed under the Apache 2.0 license # found in the LICENSE file in the root directory. from io import BytesIO import logging import warnings import numpy as np import torch from torchvision import transforms from PIL import Image, ImageFile from data import data_utils from data.ofa_dataset import OFADataset ImageFile.LOAD_TRUNCATED_IMAGES = True ImageFile.MAX_IMAGE_PIXELS = None Image.MAX_IMAGE_PIXELS = None logger = logging.getLogger(__name__) warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning) import os from data.video_utils import VIDEO_READER_FUNCS IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) def collate(samples, pad_idx, eos_idx): if len(samples) == 0: return {} def merge(key): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx=eos_idx, ) id = np.array([s["id"] for s in samples]) src_tokens = merge("source") src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples]) patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0) patch_masks = torch.cat([sample['patch_mask'] for sample in samples]) patch_videos = torch.stack([sample['patch_video'] for sample in samples], dim=0) patch_types = torch.cat([sample['patch_type'] for sample in samples]) conf = None if samples[0].get("conf", None) is not None: conf = torch.cat([s['conf'] for s in samples], dim=0) ref_dict = None if samples[0].get("ref_dict", None) is not None: ref_dict = np.array([s['ref_dict'] for s in samples]) constraint_masks = None if samples[0].get("constraint_mask", None) is not None: constraint_masks = merge("constraint_mask") decoder_prompts = None if samples[0].get("decoder_prompt", None) is not None: decoder_prompts = np.array([s['decoder_prompt'].tolist() for s in samples]) prefix_tokens = None if samples[0].get("decoder_prompt", None) is not None: prefix_tokens = merge("decoder_prompt") prefix_tokens = prefix_tokens[:, 1:] prev_output_tokens = None target = None if samples[0].get("target", None) is not None: target = merge("target") tgt_lengths = torch.LongTensor( [s["target"].ne(pad_idx).long().sum() for s in samples] ) ntokens = tgt_lengths.sum().item() if samples[0].get("prev_output_tokens", None) is not None: prev_output_tokens = merge("prev_output_tokens") else: ntokens = src_lengths.sum().item() batch = { "id": id, "nsentences": len(samples), "ntokens": ntokens, "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, "patch_images": patch_images, "patch_masks": patch_masks, "prev_output_tokens": prev_output_tokens, "patch_videos": patch_videos, "patch_types": patch_types, }, "conf": conf, "ref_dict": ref_dict, "constraint_masks": constraint_masks, "decoder_prompts": decoder_prompts, "target": target, "prefix_tokens": prefix_tokens } return batch class VidVqaGenDataset(OFADataset): def __init__( self, split, dataset, bpe, src_dict, tgt_dict=None, max_src_length=128, max_object_length=30, max_tgt_length=30, patch_image_size=224, add_object=False, constraint_trie=None, imagenet_default_mean_and_std=False, prompt_type="none", image_dir='/gpfsscratch/rech/dyf/ugz83ue/data', patch_frame_size=224, num_frames=4, sample_type='rand', use_dataaug=False, ): super().__init__(split, dataset, bpe, src_dict, tgt_dict) self.max_src_length = max_src_length self.max_object_length = max_object_length self.max_tgt_length = max_tgt_length self.patch_image_size = patch_image_size self.add_object = add_object self.constraint_trie = constraint_trie self.prompt_type = prompt_type self.image_dir = image_dir if imagenet_default_mean_and_std: mean = IMAGENET_DEFAULT_MEAN std = IMAGENET_DEFAULT_STD else: mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] self.split = split type_transform = transforms.Lambda(lambda x: x.float().div(255.0)) if self.split != 'train' or not use_dataaug: self.patch_video_resize_transform = transforms.Compose([ transforms.CenterCrop(patch_frame_size), type_transform, transforms.Normalize(mean=mean, std=std), ]) logger.info("val split, do not use random augmentation.") else: aug_transform = transforms.RandAugment() self.patch_video_resize_transform = transforms.Compose( [ aug_transform, transforms.RandomResizedCrop( patch_frame_size, scale=(0.5, 1.0), interpolation=transforms.InterpolationMode.BICUBIC, ), transforms.RandomHorizontalFlip(), type_transform, transforms.Normalize(mean=mean, std=std), ] ) logger.info("train split, use random augmentation.") # video self.num_frames = num_frames self.sample_type = sample_type self.video_reader = VIDEO_READER_FUNCS['decord'] self.max_num_frames = num_frames def __getitem__(self, index): item = self.dataset[index] if len(item) == 5: uniq_id, image, question, ref, predict_objects = item else: uniq_id, image, question, ref, predict_objects, caption = item # video image_path = os.path.join(self.image_dir, image) data_path = image_path max_num_frames = self.max_num_frames frames, frame_indices, video_duration = self.video_reader( data_path, self.num_frames, self.sample_type, max_num_frames=max_num_frames ) patch_video = self.patch_video_resize_transform(frames) patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w) patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size)) patch_type = torch.tensor([1]) patch_mask = torch.tensor([True]) question = self.pre_question(question, self.max_src_length) question = question + '?' if not question.endswith('?') else question src_item = self.encode_text(' {}'.format(question)) ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in ref.split('&&')} answer = max(ref_dict, key=ref_dict.get) conf = torch.tensor([ref_dict[answer]]) tgt_item = self.encode_text(" {}".format(answer)) if self.add_object and predict_objects is not None: predict_object_seq = ' '.join(predict_objects.strip().split('&&')[:self.max_object_length]) predict_object_item = self.encode_text(" object: {}".format(predict_object_seq)) src_item = torch.cat([src_item, predict_object_item]) src_item = torch.cat([self.bos_item, src_item, self.eos_item]) if self.prompt_type == 'none': prev_output_item = torch.cat([self.bos_item, tgt_item]) target_item = torch.cat([prev_output_item[1:], self.eos_item]) decoder_prompt = self.bos_item elif self.prompt_type == 'src': prev_output_item = torch.cat([src_item, tgt_item]) target_item = torch.cat([prev_output_item[1:], self.eos_item]) decoder_prompt = src_item elif self.prompt_type == 'prev_output': prev_output_item = torch.cat([src_item[:-1], tgt_item]) target_item = torch.cat([prev_output_item[1:], self.eos_item]) decoder_prompt = src_item[:-1] else: raise NotImplementedError target_item[:-len(tgt_item)-1] = self.tgt_dict.pad() example = { "id": uniq_id, "source": src_item, "patch_image": patch_image, "patch_video": patch_video, "patch_mask": patch_mask, "target": target_item, "prev_output_tokens": prev_output_item, "decoder_prompt": decoder_prompt, "ref_dict": ref_dict, "conf": conf, "patch_type": patch_type, } if self.constraint_trie is not None: constraint_mask = torch.zeros((len(target_item), len(self.tgt_dict))).bool() start_idx = len(target_item) - len(tgt_item) - 1 for i in range(len(target_item)-len(tgt_item)-1, len(target_item)): constraint_prefix_token = [self.tgt_dict.bos()] + target_item[start_idx:i].tolist() constraint_nodes = self.constraint_trie.get_next_layer(constraint_prefix_token) constraint_mask[i][constraint_nodes] = True example["constraint_mask"] = constraint_mask return example def collater(self, samples, pad_to_length=None): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch containing the data of the task """ return collate(samples, pad_idx=self.pad, eos_idx=self.eos)