#!/usr/bin/env # The port for communication. Note that if you want to run multiple tasks on the same machine, # you need to specify different port numbers. # Number of GPUs per GPU worker export GPUS_PER_NODE=8 # Number of GPU workers, for single-worker training, please set to 1 export NUM_NODES=$SLURM_NNODES # The ip address of the rank-0 worker, for single-worker training, please set to localhost master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) export MASTER_ADDR=$master_addr # The port for communication export MASTER_PORT=12350 # The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0 export RANK=$SLURM_NODEID echo "MASTER_ADDR: $MASTER_ADDR" echo "RANK :$RANK" echo "NUM_NODES :$NUM_NODES" echo "GPUS_PER_NODE :$GPUS_PER_NODE" export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/ echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH" exp_name=unival_refcoco ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data base_log_dir=/work/NAT/gda2204/mshukor/logs new_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs save_dir=${new_base_log_dir}/ofa/checkpoints/refcocop/${exp_name} log_dir=${save_dir} mkdir -p $log_dir $save_dir bpe_dir=${ofa_dir}/utils/BPE user_dir=${ofa_dir}/ofa_module image_dir=${base_data_dir} data_dir=${base_data_dir}/ofa/refcoco_data data=${data_dir}/refcoco_train_1.tsv,${data_dir}/refcoco_train_2.tsv,${data_dir}/refcoco_train_3.tsv,${data_dir}/refcoco_train_4.tsv,${data_dir}/refcoco_train_5.tsv,${data_dir}/refcoco_train_6.tsv,${data_dir}/refcoco_train_7.tsv,${data_dir}/refcoco_train_8.tsv,${data_dir}/refcoco_train_9.tsv,${data_dir}/refcoco_train_10.tsv,${data_dir}/refcoco_val.tsv restore_file=${base_log_dir}/ofa/checkpoints/pretrain/unival_s2_hs/checkpoint1.pt selected_cols=0,4,2,3 task=refcoco arch=unival_base pretrained_model= criterion=adjust_label_smoothed_cross_entropy label_smoothing=0.1 lr=5e-5 max_epoch=10 warmup_ratio=0.06 batch_size=8 update_freq=4 resnet_drop_path_rate=0.0 encoder_drop_path_rate=0.1 decoder_drop_path_rate=0.1 dropout=0.1 attention_dropout=0.0 max_src_length=80 max_tgt_length=20 num_bins=1000 patch_image_size=512 image_encoder_name=timm_resnet #vit_base_patch16_224 resnet_type=resnet101 save_interval=1 validate_interval_updates=2000 save_interval_updates=0 sample_patch_num='--sample-patch-num=784' # '' echo "max_epoch "${max_epoch} echo "lr "${lr} echo "patch_image_size "${patch_image_size} log_file=${log_dir}/${max_epoch}"_"${lr}"_"${patch_image_size}".log" save_path=${save_dir}/${max_epoch}"_"${lr}"_"${patch_image_size} mkdir -p $save_path acc_thresh=0.5 python3 -m torch.distributed.launch \ --nnodes=${NUM_NODES} \ --nproc_per_node=${GPUS_PER_NODE} \ --master_port=${MASTER_PORT} \ --node_rank=${RANK} \ --master_addr=${MASTER_ADDR} \ --use_env ${ofa_dir}/train.py \ $data \ --selected-cols=${selected_cols} \ --bpe-dir=${bpe_dir} \ --user-dir=${user_dir} \ --restore-file=${restore_file} \ --reset-optimizer --reset-dataloader --reset-meters \ --save-dir=${save_path} \ --task=${task} \ --arch=${arch} \ --criterion=${criterion} \ --label-smoothing=${label_smoothing} \ --batch-size=${batch_size} \ --update-freq=${update_freq} \ --encoder-normalize-before \ --decoder-normalize-before \ --share-decoder-input-output-embed \ --share-all-embeddings \ --layernorm-embedding \ --patch-layernorm-embedding \ --code-layernorm-embedding \ --resnet-drop-path-rate=${resnet_drop_path_rate} \ --encoder-drop-path-rate=${encoder_drop_path_rate} \ --decoder-drop-path-rate=${decoder_drop_path_rate} \ --dropout=${dropout} \ --attention-dropout=${attention_dropout} \ --weight-decay=0.01 --optimizer=adam --adam-betas="(0.9,0.999)" --adam-eps=1e-08 --clip-norm=1.0 \ --lr-scheduler=polynomial_decay --lr=${lr} \ --max-epoch=${max_epoch} --warmup-ratio=${warmup_ratio} \ --log-format=simple --log-interval=10 \ --fixed-validation-seed=7 \ --no-epoch-checkpoints --keep-best-checkpoints=1 \ --save-interval=${save_interval} --validate-interval=1 \ --save-interval-updates=${save_interval_updates} --validate-interval-updates=${validate_interval_updates} \ --eval-acc \ --eval-args='{"beam":5,"min_len":4,"max_len_a":0,"max_len_b":4}' \ --best-checkpoint-metric=score --maximize-best-checkpoint-metric \ --max-src-length=${max_src_length} \ --max-tgt-length=${max_tgt_length} \ --find-unused-parameters \ --add-type-embedding \ --scale-attn \ --scale-fc \ --scale-heads \ --disable-entangle \ --num-bins=${num_bins} \ --patch-image-size=${patch_image_size} \ --fp16 \ --fp16-scale-window=512 \ --num-workers=0 \ --image-dir=${image_dir} \ ${sample_patch_num} \ --acc-thresh=${acc_thresh} \ --image-encoder-name=${image_encoder_name} \ --strict