#!/usr/bin/env bash # The port for communication. Note that if you want to run multiple tasks on the same machine, # you need to specify different port numbers. # Number of GPUs per GPU worker export GPUS_PER_NODE=8 # Number of GPU workers, for single-worker training, please set to 1 export NUM_NODES=$SLURM_NNODES # The ip address of the rank-0 worker, for single-worker training, please set to localhost master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) export MASTER_ADDR=$master_addr # The port for communication export MASTER_PORT=12350 # The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0 export RANK=$SLURM_NODEID echo "MASTER_ADDR: $MASTER_ADDR" echo "RANK :$RANK" echo "NUM_NODES :$NUM_NODES" echo "GPUS_PER_NODE :$GPUS_PER_NODE" export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/ echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH" num_workers=0 exp_name=eval_caption_stage_1_ofaplus_base_pretrain_s2 ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data base_log_dir=/work/NAT/gda2204/mshukor/logs bpe_dir=${ofa_dir}/utils/BPE user_dir=${ofa_dir}/ofa_module data_dir=${base_data_dir}/ofa/caption_data split=test # val test data=${data_dir}/caption_${split}.tsv # caption_val caption_test zero_shot='' new_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs # model_name=avg_postratafusevanilla # path=/lus/scratch/NAT/gda2204/SHARED/logs/ofa/pretrained_models/average_models/avg_postratafusevanilla.pt # zero_shot='--zero-shot' model_name=unival_caption_stage_1 path=/work/NAT/gda2204/mshukor/logs/ofa/checkpoints/caption/unival_caption_stage_1/checkpoint_best.pt result_path=${new_base_log_dir}/ofa/results/caption/eval_${model_name}_${split} mkdir ${result_path} selected_cols=1,4,2 image_encoder_name=timm_resnet #vit_base_patch16_224 timm_resnet resnet resnet_type=resnet101 python3 -m torch.distributed.launch \ --nnodes=${NUM_NODES} \ --nproc_per_node=${GPUS_PER_NODE} \ --master_port=${MASTER_PORT} \ --node_rank=${RANK} \ --master_addr=${MASTER_ADDR} \ --use_env ${ofa_dir}/evaluate.py \ ${data} \ --path=${path} \ --user-dir=${user_dir} \ --task=caption \ --batch-size=16 \ --log-format=simple --log-interval=10 \ --seed=7 \ --gen-subset=${split} \ --results-path=${result_path} \ --beam=5 \ --max-len-b=22 \ --unnormalized \ --no-repeat-ngram-size=3 \ --fp16 \ --num-workers=0 \ --patch-image-size=480 \ ${zero_shot} \ --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"eval_cider\":False,\"selected_cols\":\"${selected_cols}\"}" python ${ofa_dir}/run_scripts/caption/coco_eval.py ${result_path}/${split}_predict.json ${data_dir}/test_caption_coco_format.json