#!/usr/bin/env bash # The port for communication. Note that if you want to run multiple tasks on the same machine, # you need to specify different port numbers. # The port for communication. Note that if you want to run multiple tasks on the same machine, # you need to specify different port numbers. # Number of GPUs per GPU worker export GPUS_PER_NODE=8 # Number of GPU workers, for single-worker training, please set to 1 export NUM_NODES=$SLURM_NNODES # The ip address of the rank-0 worker, for single-worker training, please set to localhost master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) export MASTER_ADDR=$master_addr # The port for communication export MASTER_PORT=12350 # The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0 export RANK=$SLURM_NODEID echo "MASTER_ADDR: $MASTER_ADDR" echo "RANK :$RANK" echo "NUM_NODES :$NUM_NODES" echo "GPUS_PER_NODE :$GPUS_PER_NODE" export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/ echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH" num_workers=0 exp_name=eval_vizwiz_base_best ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data base_log_dir=/work/NAT/gda2204/mshukor/logs bpe_dir=${ofa_dir}/utils/BPE user_dir=${ofa_dir}/ofa_module data_dir=${base_data_dir}/ofa/vqa_data # val or train split=val read_from_img_path='--read-from-img-path' #'--read-from-img-path' # '' data=${data_dir}/vizwiz_acc_${split}.tsv ans2label_file=${base_data_dir}/ofa/vqa_data/vizwiz_trainval_ans2label.pkl zero_shot='' eval_ema='--ema-eval' # model_name=vqa_ofaplus_base_pretrain_s2_bs16_lr1e4_shuf # path=${base_log_dir}/ofa/checkpoints/vqa/${model_name}/20_0.04_1e-4_480/checkpoint_best.pt model_name=avg_postratafuse path=/lus/scratch/NAT/gda2204/SHARED/logs/ofa/pretrained_models/average_models/avg_postratafuse.pt zero_shot='--zero-shot' eval_ema='' new_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs result_path=${new_base_log_dir}/ofa/results/vqa/vizwiz_${split}_beam_${model_name} mkdir ${result_path} selected_cols=0,5,2,3,4 valid_batch_size=8 image_dir=${base_data_dir} python3 -m torch.distributed.launch \ --nnodes=${NUM_NODES} \ --nproc_per_node=${GPUS_PER_NODE} \ --master_port=${MASTER_PORT} \ --node_rank=${RANK} \ --master_addr=${MASTER_ADDR} \ --use_env ${ofa_dir}/evaluate.py \ ${data} \ --path=${path} \ --user-dir=${user_dir} \ --task=vqa_gen \ --batch-size=32 \ --valid-batch-size=${valid_batch_size} \ --log-format=simple --log-interval=10 \ --seed=7 \ --gen-subset=${split} \ --results-path=${result_path} \ --fp16 \ --beam-search-vqa-eval \ --beam=5 \ --unnormalized \ --temperature=1.0 \ ${eval_ema} \ --num-workers=0 \ --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"selected_cols\":\"${selected_cols}\",\"ans2label_file\":\"${ans2label_file}\",\"valid_batch_size\":\"${valid_batch_size}\"}" \ --image-dir=${image_dir} \ ${read_from_img_path} \ --strict \ ${zero_shot} \ --patch-image-size=480 \ --prompt-type='none' # --noconstraints # --ema-eval \