# Copyright 2022 The OFA-Sys Team. # All rights reserved. # This source code is licensed under the Apache 2.0 license # found in the LICENSE file in the root directory. from io import BytesIO import math import logging import random import warnings import numpy as np import torch import base64 from torchvision import transforms from PIL import Image, ImageFile from data import data_utils from data.ofa_dataset import OFADataset from utils.vision_helper import RandomAugment import utils.transforms as T ImageFile.LOAD_TRUNCATED_IMAGES = True ImageFile.MAX_IMAGE_PIXELS = None Image.MAX_IMAGE_PIXELS = None logger = logging.getLogger(__name__) warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning) def get_whole_word_mask(bpe, dictionary): if bpe is not None: def is_beginning_of_word(i): if i < dictionary.nspecial: # special elements are always considered beginnings return True tok = dictionary[i] if tok.startswith("madeupword"): return True try: return bpe.is_beginning_of_word(tok) except ValueError: return True mask_whole_words = torch.ByteTensor( list(map(is_beginning_of_word, range(len(dictionary)))) ) return mask_whole_words return None def collate(samples, pad_idx, eos_idx): if len(samples) == 0: return {} def merge(key): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx=eos_idx, ) id = np.array([s["id"] for s in samples]) src_tokens = merge("source") src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples]) patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0) patch_masks = torch.cat([sample['patch_mask'] for sample in samples]) code_masks = None if samples[0].get("code_mask", None) is not None: code_masks = torch.cat([sample['code_mask'] for sample in samples]) conf = torch.cat([s['conf'] for s in samples], dim=0) prev_output_tokens = None target = None if samples[0].get("target", None) is not None: target = merge("target") tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples]) ntokens = tgt_lengths.sum().item() if samples[0].get("prev_output_tokens", None) is not None: prev_output_tokens = merge("prev_output_tokens") else: ntokens = src_lengths.sum().item() batch = { "id": id, "nsentences": len(samples), "ntokens": ntokens, "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, "patch_images": patch_images, "patch_masks": patch_masks, "code_masks": code_masks, "prev_output_tokens": prev_output_tokens }, "target": target, "conf": conf } return batch class UnifyDataset(OFADataset): def __init__( self, split, dataset, bpe, src_dict, tgt_dict=None, max_src_length=128, max_tgt_length=30, seed=7, code_dict_size=8192, num_bins=1000, patch_image_size=384, code_image_size=128, pure_text_dataset=None, pure_image_dataset=None, detection_dataset=None, all_object_list=None, all_caption_list=None, type2ans_dict=None, ans2type_dict=None, max_image_size=512, mask_ratio=0.3, random_ratio=0.0, keep_ratio=0.0, mask_length="span-poisson", poisson_lambda=3.0, replace_length=1, read_from_img_path=False, ): super().__init__(split, dataset, bpe, src_dict, tgt_dict) self.max_src_length = max_src_length self.max_tgt_length = max_tgt_length self.seed = seed self.code_dict_size = code_dict_size self.num_bins = num_bins self.patch_image_size = patch_image_size self.code_image_size = code_image_size self.pure_text_dataset = pure_text_dataset self.pure_image_dataset = pure_image_dataset self.detection_dataset = detection_dataset self.epoch = 0 self.all_object_list = all_object_list self.all_caption_list = all_caption_list self.type2ans_dict = type2ans_dict self.ans2type_dict = ans2type_dict self.mask_ratio = mask_ratio self.random_ratio = random_ratio self.keep_ratio = keep_ratio self.mask_length = mask_length self.poisson_lambda = poisson_lambda self.replace_length = replace_length if self.replace_length not in [-1, 0, 1]: raise ValueError(f"invalid arg: replace_length={self.replace_length}") if self.mask_length not in ["subword", "word", "span-poisson"]: raise ValueError(f"invalid arg: mask-length={self.mask_length}") if self.mask_length == "subword" and self.replace_length not in [0, 1]: raise ValueError(f"if using subwords, use replace-length=1 or 0") self.mask_idx = src_dict.index("") self.mask_whole_word = ( get_whole_word_mask(self.bpe, self.src_dict) if self.mask_length != "subword" else None ) self.mask_span_distribution = None if self.mask_length == "span-poisson": _lambda = self.poisson_lambda lambda_to_the_k = 1 e_to_the_minus_lambda = math.exp(-_lambda) k_factorial = 1 ps = [] for k in range(0, 128): ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial) lambda_to_the_k *= _lambda k_factorial *= k + 1 if ps[-1] < 0.0000001: break ps = torch.FloatTensor(ps) self.mask_span_distribution = torch.distributions.Categorical(ps) self.pos_tgt_item = self.encode_text(" yes") self.neg_tgt_item = self.encode_text(" no") self.mask_left = self.mask_top = int(0.5 * self.code_image_size) self.mask_right = self.mask_bottom = int(1.5 * self.code_image_size) self.mask_ids = [ i*self.code_image_size*2+j for i in range(self.code_image_size*2) for j in range(self.code_image_size*2) if not (self.mask_left <= i < self.mask_right and self.mask_top <= j < self.mask_bottom) ] scales = np.arange(patch_image_size, 481).tolist() # for image-text pair self.patch_resize_transform = transforms.Compose([ T.RandomResize(scales, max_size=672), transforms.CenterCrop(patch_image_size), RandomAugment(2, 7, isPIL=True, augs=['Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness', 'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) # for pure image self.patch_crop_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) # for detection self.detection_transform = T.Compose([ T.RandomHorizontalFlip(), T.LargeScaleJitter(output_size=self.code_image_size*2, aug_scale_min=1.0, aug_scale_max=1.5), T.ToTensor(), T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_image_size=max_image_size) ]) # for visual grounding self.visual_grounding_transform = T.Compose([ T.RandomResize(scales, max_size=672), T.ObjectCenterCrop((patch_image_size, patch_image_size)), T.ToTensor(), T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_image_size=max_image_size) ]) self.read_from_img_path = read_from_img_path def set_epoch(self, epoch, **unused): self.epoch = epoch def get_negative_caption(self, caption, gt_objects): prob = random.random() if gt_objects is not None and gt_objects != '' and prob > 0.6: gt_object = random.choice(gt_objects.strip().split('&&')) negative_object = random.choice(self.all_object_list[:-1]) negative_object = self.all_object_list[-1] if negative_object == gt_object else negative_object negative_caption = caption.replace(gt_object, negative_object) else: negative_caption = random.choice(self.all_caption_list) return negative_caption def get_negative_answer(self, answer, conf): prob = random.random() if conf > (prob + 0.1) and answer in self.ans2type_dict: negative_answer_type = self.ans2type_dict[answer] if negative_answer_type == 'how many' and answer.isdigit() and prob > 0.5: negative_answer = int(answer) + random.choice([-1, 1]) if answer != 0 else 1 else: negative_answer_list = self.type2ans_dict[negative_answer_type] negative_answer = random.choice(negative_answer_list[:-1]) negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer return negative_answer negative_answer_list = self.type2ans_dict['other'] negative_answer = random.choice(negative_answer_list[:-1]) negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer return negative_answer def process_image_text_pair(self, index): uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = self.dataset[index] if self.read_from_img_path: image = Image.open(image).convert("RGB") else: image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB") patch_image = self.patch_resize_transform(image) if type != 'visual_grounding' else None patch_mask = torch.tensor([True]) conf = torch.tensor([1.0]) if type == 'caption': tgt_caption = self.pre_caption(caption, self.max_tgt_length) pos_src_caption = self.pre_caption(caption, self.max_src_length) neg_src_caption = self.pre_caption(self.get_negative_caption(caption, gt_objects), self.max_src_length) src_item = self.encode_text(" what does the image describe?") tgt_item = self.encode_text(" {}".format(tgt_caption)) pos_src_item = self.encode_text(' does the image describe " {} "?'.format(pos_src_caption)) neg_src_item = self.encode_text(' does the image describe " {} "?'.format(neg_src_caption)) elif type == 'qa': question = self.pre_question(question, self.max_src_length) ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in refs.split('&&')} answer = max(ref_dict, key=ref_dict.get) conf = ref_dict[answer] src_item = self.encode_text(" {}".format(question)) tgt_item = self.encode_text(" {}".format(answer)) conf = torch.tensor([conf]) pos_src_item = self.encode_text(' what is the answer to question " {} ". is " {} "?'.format(question, answer)) neg_src_item = self.encode_text( ' what is the answer to question " {} ". is " {} "?'.format(question, self.get_negative_answer(answer, conf)) ) elif type == 'visual_grounding': conf = torch.tensor([1.0]) w, h = image.size boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])} x0, y0, x1, y1 = refs.strip().split(',') boxes_target["boxes"] = torch.tensor([[float(x0), float(y0), float(x1), float(y1)]]) boxes_target["labels"] = np.array([0]) boxes_target["area"] = torch.tensor([(float(x1) - float(x0)) * (float(y1) - float(y0))]) patch_image, boxes_target = self.visual_grounding_transform(image, boxes_target) quant_x0 = "".format(int((boxes_target["boxes"][0][0] * (self.num_bins - 1)).round())) quant_y0 = "".format(int((boxes_target["boxes"][0][1] * (self.num_bins - 1)).round())) quant_x1 = "".format(int((boxes_target["boxes"][0][2] * (self.num_bins - 1)).round())) quant_y1 = "".format(int((boxes_target["boxes"][0][3] * (self.num_bins - 1)).round())) region_coord = "{} {} {} {}".format(quant_x0, quant_y0, quant_x1, quant_y1) src_caption = self.pre_caption(caption, self.max_src_length) src_item = self.encode_text(' which region does the text " {} " describe?'.format(src_caption)) tgt_item = self.encode_text(region_coord, use_bpe=False) else: logger.info('type {} is not implemented'.format(type)) raise NotImplementedError src_item = torch.cat([self.bos_item, src_item, self.eos_item]) target_item = torch.cat([tgt_item, self.eos_item]) prev_output_item = torch.cat([self.bos_item, tgt_item]) pos_src_item = torch.cat([self.bos_item, pos_src_item, self.eos_item]) if type != 'visual_grounding' else None neg_src_item = torch.cat([self.bos_item, neg_src_item, self.eos_item]) if type != 'visual_grounding' else None if type == 'caption' and dataset_name == 'cc12m': target_item[:2] = self.src_dict.pad() target_item[-1] = self.eos_item example = { "id": uniq_id, "source": src_item, "patch_image": patch_image, "patch_mask": patch_mask, "target": target_item, "prev_output_tokens": prev_output_item, "conf": conf, } examples = [example] prob = random.random() if type == 'visual_grounding': region_example = example.copy() region_prefix_item = self.encode_text(' what does the region describe? region:') region_coord_item = self.encode_text('{}'.format(region_coord), use_bpe=False) region_src_item = torch.cat([region_prefix_item, region_coord_item]) region_tgt_item = self.encode_text(' {}'.format(self.pre_caption(caption, self.max_tgt_length))) region_example["source"] = torch.cat([self.bos_item, region_src_item, self.eos_item]) region_example["target"] = torch.cat([region_tgt_item, self.eos_item]) region_example["prev_output_tokens"] = torch.cat([self.bos_item, region_tgt_item]) region_example["conf"] = torch.tensor([1.0]) examples.append(region_example) elif prob >= 0.5 and self.split == 'train': pos_example = example.copy() pos_example["source"] = pos_src_item pos_example["target"] = torch.cat([self.pos_tgt_item, self.eos_item]) pos_example["prev_output_tokens"] = torch.cat([self.bos_item, self.pos_tgt_item]) examples.append(pos_example) elif self.split == 'train': neg_example = example.copy() neg_example["source"] = neg_src_item neg_example["target"] = torch.cat([self.neg_tgt_item, self.eos_item]) neg_example["prev_output_tokens"] = torch.cat([self.bos_item, self.neg_tgt_item]) examples.append(neg_example) return examples def process_pure_text(self, index): patch_image = torch.zeros((3, self.code_image_size*2, self.code_image_size*2)) patch_mask = torch.tensor([False]) code_mask = torch.tensor([False]) conf = torch.tensor([2.0]) examples = [] for _ in range(2): uniq_id, text = self.pure_text_dataset[index] text = text.strip().lower() text_item = self.encode_text(" {}".format(text), length=512) text_item = text_item[-256:] text_item = torch.cat([self.bos_item, text_item, self.eos_item]) mask_text_item = self.add_whole_word_mask(text_item.clone(), self.mask_ratio) prefix_item = self.encode_text(' what is the complete text of " "?') src_item = torch.cat([prefix_item[:-2], mask_text_item[1:-1], prefix_item[-2:]]) tgt_item = text_item[1:-1] src_item = torch.cat([self.bos_item, src_item, self.eos_item]) target_item = torch.cat([tgt_item, self.eos_item]) prev_output_item = torch.cat([self.bos_item, tgt_item]) example = { "id": uniq_id, "source": src_item, "patch_image": patch_image, "patch_mask": patch_mask, "code_mask": code_mask, "target": target_item, "prev_output_tokens": prev_output_item, "conf": conf, } examples.append(example) return examples def process_pure_image(self, index): image_id, image, code = self.pure_image_dataset[index] if self.read_from_img_path: image = Image.open(image).convert("RGB") else: image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB") patch_image = self.patch_crop_transform(image) patch_image[:, self.mask_top:self.mask_bottom, self.mask_left:self.mask_right] = 0 patch_mask = torch.tensor([True]) src_item = self.encode_text(" what is the image in the middle part?") image_code = torch.LongTensor([int(num) for num in code.strip().split()]) tgt_item = image_code + len(self.src_dict) - self.code_dict_size - self.num_bins code_mask = torch.tensor([True]) conf = torch.tensor([2.0]) src_item = torch.cat([self.bos_item, src_item, self.eos_item]) target_item = torch.cat([tgt_item, self.eos_item]) prev_output_item = torch.cat([self.bos_item, tgt_item]) example = { "id": image_id, "source": src_item, "patch_image": patch_image, "patch_mask": patch_mask, "code_mask": code_mask, "target": target_item, "prev_output_tokens": prev_output_item, "conf": conf, } return [example] def process_detection(self, index): image_id, image, label = self.detection_dataset[index] if self.read_from_img_path: image = Image.open(image).convert("RGB") else: image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB") w, h = image.size boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])} label_list = label.strip().split('&&') for label in label_list: x0, y0, x1, y1, cat_id, cat = label.strip().split(',', 5) boxes_target["boxes"].append([float(x0), float(y0), float(x1), float(y1)]) boxes_target["labels"].append(cat) boxes_target["area"].append((float(x1) - float(x0)) * (float(y1) - float(y0))) boxes_target["boxes"] = torch.tensor(boxes_target["boxes"]) boxes_target["labels"] = np.array(boxes_target["labels"]) boxes_target["area"] = torch.tensor(boxes_target["area"]) patch_image, boxes_target = self.detection_transform(image, boxes_target) patch_mask = torch.tensor([True]) code_mask = torch.tensor([False]) conf = torch.tensor([2.0]) quant_boxes = [] for i, box in enumerate(boxes_target["boxes"]): quant_boxes.extend(["".format(int((pos * (self.num_bins - 1)).round())) for pos in box[:4]]) quant_boxes.append(self.bpe.encode(' {}'.format(boxes_target["labels"][i]))) src_item = self.encode_text(' what are the objects in the image?') tgt_item = self.encode_text(' '.join(quant_boxes), use_bpe=False) src_item = torch.cat([self.bos_item, src_item, self.eos_item]) target_item = torch.cat([tgt_item, self.eos_item]) prev_output_item = torch.cat([self.bos_item, tgt_item]) example = { "id": image_id, "source": src_item, "patch_image": patch_image, "patch_mask": patch_mask, "code_mask": code_mask, "target": target_item, "prev_output_tokens": prev_output_item, "conf": conf, } return [example] def __getitem__(self, index): with data_utils.numpy_seed(self.seed, self.epoch): pair_samples = self.process_image_text_pair(index) extra_samples = [] if self.split == 'train' and self.dataset.data_cnt % 8 == 0: extra_samples += self.process_pure_text(0) if self.pure_text_dataset else [] extra_samples += self.process_pure_image(0) if self.pure_image_dataset else [] extra_samples += self.process_detection(0) if self.detection_dataset else [] return pair_samples, extra_samples def word_starts(self, source): if self.mask_whole_word is not None: is_word_start = self.mask_whole_word.gather(0, source) else: is_word_start = torch.ones(source.size()) is_word_start[0] = 0 is_word_start[-1] = 0 return is_word_start def add_whole_word_mask(self, source, p): is_word_start = self.word_starts(source) num_to_mask = int(math.ceil(is_word_start.float().sum() * p)) num_inserts = 0 if num_to_mask == 0: return source if self.mask_span_distribution is not None: lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,)) # Make sure we have enough to mask cum_length = torch.cumsum(lengths, 0) while cum_length[-1] < num_to_mask: lengths = torch.cat( [ lengths, self.mask_span_distribution.sample(sample_shape=(num_to_mask,)), ], dim=0, ) cum_length = torch.cumsum(lengths, 0) # Trim to masking budget i = 0 while cum_length[i] < num_to_mask: i += 1 lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1]) num_to_mask = i + 1 lengths = lengths[:num_to_mask] # Handle 0-length mask (inserts) separately lengths = lengths[lengths > 0] num_inserts = num_to_mask - lengths.size(0) num_to_mask -= num_inserts if num_to_mask == 0: return self.add_insertion_noise(source, num_inserts / source.size(0)) assert (lengths > 0).all() else: lengths = torch.ones((num_to_mask,)).long() assert is_word_start[-1] == 0 word_starts = is_word_start.nonzero(as_tuple=False) indices = word_starts[ torch.randperm(word_starts.size(0))[:num_to_mask] ].squeeze(1) mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio source_length = source.size(0) assert source_length - 1 not in indices to_keep = torch.ones(source_length, dtype=torch.bool) is_word_start[ -1 ] = 255 # acts as a long length, so spans don't go over the end of doc if self.replace_length == 0: to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),) ) if self.mask_span_distribution is not None: assert len(lengths.size()) == 1 assert lengths.size() == indices.size() lengths -= 1 while indices.size(0) > 0: assert lengths.size() == indices.size() lengths -= is_word_start[indices + 1].long() uncompleted = lengths >= 0 indices = indices[uncompleted] + 1 mask_random = mask_random[uncompleted] lengths = lengths[uncompleted] if self.replace_length != -1: # delete token to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),) ) else: # A bit faster when all lengths are 1 while indices.size(0) > 0: uncompleted = is_word_start[indices + 1] == 0 indices = indices[uncompleted] + 1 mask_random = mask_random[uncompleted] if self.replace_length != -1: # delete token to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),) ) assert source_length - 1 not in indices source = source[to_keep] if num_inserts > 0: source = self.add_insertion_noise(source, num_inserts / source.size(0)) return source def add_insertion_noise(self, tokens, p): if p == 0.0: return tokens num_tokens = len(tokens) n = int(math.ceil(num_tokens * p)) noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1 noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool) noise_mask[noise_indices] = 1 result = torch.LongTensor(n + len(tokens)).fill_(-1) num_random = int(math.ceil(n * self.random_ratio)) result[noise_indices[num_random:]] = self.mask_idx result[noise_indices[:num_random]] = torch.randint( low=4, high=len(self.tgt_dict)-self.code_dict_size-self.num_bins, size=(num_random,) ) result[~noise_mask] = tokens assert (result >= 0).all() return result def collater(self, samples, pad_to_length=None): """Merge samples of different tasks to form two mini-batches. Args: samples (List[Tuple]): samples to collate Returns: Tuple[dict]: two mini-batch containing the data of different tasks """ samples_v1 = [] # containing image-text pairs samples_v2 = [] # containing detection data, text data and image data for sample_tuple in samples: samples_v1 += sample_tuple[0] samples_v2 += sample_tuple[1] if samples_v2 != []: res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos) res_v2 = collate(samples_v2, pad_idx=self.src_dict.pad(), eos_idx=self.eos) return res_v1, res_v2 else: res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos) return res_v1