# Number of GPUs per GPU worker export GPUS_PER_NODE=8 # Number of GPU workers, for single-worker training, please set to 1 export NUM_NODES=$SLURM_NNODES # The ip address of the rank-0 worker, for single-worker training, please set to localhost master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) export MASTER_ADDR=$master_addr # The port for communication export MASTER_PORT=12350 # The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0 export RANK=$SLURM_NODEID echo "MASTER_ADDR: $MASTER_ADDR" echo "RANK :$RANK" echo "NUM_NODES :$NUM_NODES" echo "GPUS_PER_NODE :$GPUS_PER_NODE" export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/ echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH" num_workers=0 ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data base_log_dir=/work/NAT/gda2204/mshukor/logs exp_name=unival_s1 save_dir=${base_log_dir}/ofa/checkpoints/pretrain/${exp_name} bpe_dir=${ofa_dir}/utils/BPE user_dir=${ofa_dir}/ofa_module restore_file=${base_log_dir}/ofa/pretrained_models/bart.base/model.pt image_dir=${base_data_dir} data_dir=${base_data_dir}/ofa/pretrain_ours mkdir -p $save_dir neg_sample_dir=${data_dir}/negative_sample data=${data_dir}/vision_language_caption.tsv #vision_language_mini.tsv text_data= #${data_dir}/text_mini.tsv image_data= #${data_dir}/image_mini.tsv detection_data= #${data_dir}/detection_mini.tsv image_text_data=${data_dir}/cc12m.tsv image_text_cnt=8 image_text_vqa_data=${data_dir}/vision_language_qa.tsv image_text_vqa_cnt=1 image_text_ground_data=${data_dir}/vision_language_ground.tsv image_text_ground_cnt=1 selected_cols=0,1,2,3,4,5,6,7 text_selected_cols=0,1 image_selected_cols=0,1,2 detection_selected_cols=0,1,2 task=unify_task arch=unival_base criterion=adjust_label_smoothed_cross_entropy label_smoothing=0.0 lr=2e-4 lr_scheduler=polynomial_decay max_epoch=50 warmup_ratio=0.01 batch_size=2 update_freq=2 resnet_drop_path_rate=0.0 encoder_drop_path_rate=0.1 decoder_drop_path_rate=0.1 dropout=0.1 attention_dropout=0.0 max_src_length=80 max_tgt_length=30 num_bins=1000 max_image_size=512 save_interval_updates=0 image_encoder_name=timm_resnet #vit_base_patch16_224 patch_image_size=384 resnet_type=resnet101 sample_patch_num=144 resnet_model_path=${base_log_dir}/pretrained_models/resnet101_a1h-36d3f2aa.pth python3 -m torch.distributed.launch \ --nnodes=${NUM_NODES} \ --nproc_per_node=${GPUS_PER_NODE} \ --master_port=${MASTER_PORT} \ --node_rank=${RANK} \ --master_addr=${MASTER_ADDR} \ --use_env ${ofa_dir}/train.py \ $data \ --ddp-backend=no_c10d \ --selected-cols=${selected_cols} \ --text-selected-cols=${text_selected_cols} \ --image-selected-cols=${image_selected_cols} \ --detection-selected-cols=${detection_selected_cols} \ --bpe-dir=${bpe_dir} \ --user-dir=${user_dir} \ --save-dir=${save_dir} \ --neg-sample-dir=${neg_sample_dir} \ --task=${task} \ --arch=${arch} \ --criterion=${criterion} \ --label-smoothing=${label_smoothing} \ --batch-size=${batch_size} \ --update-freq=${update_freq} \ --encoder-normalize-before \ --decoder-normalize-before \ --share-decoder-input-output-embed \ --share-all-embeddings \ --layernorm-embedding \ --patch-layernorm-embedding \ --code-layernorm-embedding \ --resnet-drop-path-rate=${resnet_drop_path_rate} \ --encoder-drop-path-rate=${encoder_drop_path_rate} \ --decoder-drop-path-rate=${decoder_drop_path_rate} \ --dropout=${dropout} \ --attention-dropout=${attention_dropout} \ --weight-decay=0.01 --optimizer=adam --adam-betas="(0.9,0.999)" --adam-eps=1e-08 --clip-norm=5.0 \ --lr-scheduler=${lr_scheduler} --lr=${lr} \ --max-epoch=${max_epoch} --warmup-ratio=${warmup_ratio} \ --log-format=simple --log-interval=10 \ --fixed-validation-seed=7 \ --keep-last-epochs=15 \ --save-interval=1 \ --save-interval-updates=${save_interval_updates} \ --disable-validation \ --max-src-length=${max_src_length} \ --max-tgt-length=${max_tgt_length} \ --add-type-embedding \ --scale-attn \ --scale-fc \ --scale-heads \ --disable-entangle \ --num-bins=${num_bins} \ --patch-image-size=${patch_image_size} \ --sample-patch-num=${sample_patch_num} \ --max-image-size=${max_image_size} \ --fp16 \ --fp16-scale-window=128 \ --num-workers=${num_workers} \ --read-from-img-path \ --image-dir=${image_dir} \ --restore-file=${restore_file} \ --image-encoder-name=${image_encoder_name} \ --resnet-type=${resnet_type} \ --resnet-model-path=${resnet_model_path} \ --image-text-data=${image_text_data} \ --image-text-cnt=${image_text_cnt} \ --image-text-vqa-data=${image_text_vqa_data} \ --image-text-vqa-cnt=${image_text_vqa_cnt} \ --image-text-ground-data=${image_text_ground_data} \ --image-text-ground-cnt=${image_text_ground_cnt}