import sys

sys.path.append('../../')
import argparse
import base64
from io import BytesIO
from data.file_dataset import FileDataset
from PIL import Image, ImageFile
from torchvision import transforms
from omegaconf import OmegaConf
from models.taming.models.vqgan import GumbelVQ
import os

import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np

ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None

from tqdm import tqdm 

class VQGANDataset(Dataset):
    def __init__(self, file, selected_cols, skip_convert_images=True, image_root=None, pretraininig=True):
        self.reader = FileDataset(
            file,
            selected_col_ids=selected_cols,
        )

        self.skip_convert_images = skip_convert_images
        self.image_root = image_root

        if self.skip_convert_images:
            self.code_resize_transform = transforms.Compose([
                lambda image: image.convert("RGB"),
                transforms.Resize((args.code_image_size,args.code_image_size),interpolation=Image.BICUBIC),
                transforms.ToTensor(),
                preprocess_vqgan
            ])
            if pretraininig:
                self.code_resize_transform = transforms.Compose([
                    lambda image: image.convert("RGB"),
                    transforms.Resize((args.code_image_size,args.code_image_size),interpolation=Image.BICUBIC),
                    transforms.CenterCrop(int(0.5*args.code_image_size)),
                    transforms.ToTensor(),
                    preprocess_vqgan
                ])
        else:
            self.code_resize_transform = transforms.Compose([
                lambda image: image.convert("RGB"),
                transforms.Resize(args.code_image_size, interpolation=Image.LANCZOS),
                transforms.ToTensor(),
                preprocess_vqgan
                ])
            if pretraininig:
                self.code_resize_transform = transforms.Compose([
                    lambda image: image.convert("RGB"),
                    transforms.Resize(args.code_image_size, interpolation=Image.LANCZOS),
                    transforms.CenterCrop(int(0.5*args.code_image_size)),
                    transforms.ToTensor(),
                    preprocess_vqgan
                    ])

    def __len__(self):
        return len(self.reader)

    def __getitem__(self, item):
        column_l = self.reader[item]
        if len(column_l) == 4:
            pair_id, image_id, image, text = column_l
        elif len(column_l) == 2:
            image_id, image = column_l
        else:
            raise NotImplementedError
        

        if not self.skip_convert_images:
            image = Image.open(BytesIO(base64.urlsafe_b64decode(image)))
        else:
            if self.image_root is not None:
                image = os.path.join(self.image_root, image)
            try:
                image = Image.open(image)
            except PIL.UnidentifiedImageError:
                column_l = self.reader[0]
                if len(column_l) == 4:
                    pair_id, image_id, image, text = column_l
                elif len(column_l) == 2:
                    image_id, image = column_l
                else:
                    raise NotImplementedError
                image = Image.open(image)

        code_image = self.code_resize_transform(image)
        if len(column_l) == 4:
            return {"code_image": code_image, "pair_id": pair_id, "image_id": image_id, "text": text}
        elif len(column_l) == 2:
            return {"code_image": code_image, "image_id": image_id}


def custom_to_pil(x):
    x = x.detach().cpu()
    x = torch.clamp(x, -1., 1.)
    x = (x + 1.) / 2.
    x = x.permute(1, 2, 0).numpy()
    x = (255 * x).astype(np.uint8)
    x = Image.fromarray(x)
    if not x.mode == "RGB":
        x = x.convert("RGB")
    return x


def map_pixels(x, eps=0.1):
    return (1 - 2 * eps) * x + eps


def preprocess_vqgan(x):
    x = 2. * x - 1.
    return x


def image_to_base64(img, format):
    output_buffer = BytesIO()
    img.save(output_buffer, format=format)
    byte_data = output_buffer.getvalue()
    base64_str = base64.b64encode(byte_data)
    base64_str = str(base64_str, encoding='utf-8')
    return base64_str


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--file", type=str, default="")
    parser.add_argument("--outputs", type=str, default="")
    parser.add_argument("--selected_cols", type=str, required=True)
    parser.add_argument("--code_image_size", type=int, required=True)
    parser.add_argument("--vq_model", type=str, required=True)
    parser.add_argument("--vqgan_model_path", type=str, default=None)
    parser.add_argument("--vqgan_config_path", type=str, default=None)
    parser.add_argument("--log_interval", default=100, type=int, help="log interval")
    parser.add_argument("--worker_cnt", type=int, default=1)
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument("--batch_size", type=int, default=32)
    parser.add_argument("--skip_convert_images", type=bool, default=False)
    parser.add_argument("--image_root", type=str, default=None)
    parser.add_argument("--pretraininig", type=bool, default=True)



    
    args = parser.parse_args()

    vqgan_config = OmegaConf.load(args.vqgan_config_path)
    vqgan = GumbelVQ(**vqgan_config.model.params)
    sd = torch.load(args.vqgan_model_path, map_location="cpu")["state_dict"]
    missing, unexpected = vqgan.load_state_dict(sd, strict=False)
    for k, v in vqgan.named_parameters():
        v.requires_grad = False
    image_tokenizer = vqgan.cuda().eval()

    writer = open(args.outputs, 'w')

    print("begin process")

    data_cnt = 0

    dataset = VQGANDataset(args.file, args.selected_cols, skip_convert_images=args.skip_convert_images, 
        image_root=args.image_root, pretraininig=args.pretraininig)
    dataloader = DataLoader(dataset, batch_size=args.batch_size)
    num_corrupted = 0
    processed_ids = {}
    for data in tqdm(dataloader):
        batch_size = data["code_image"].size()[0]
        with torch.no_grad():
            z, _, [_, _, image_codes] = image_tokenizer.encode(data["code_image"].cuda())
            image_codes = image_codes.view(batch_size, -1).detach()

        for i, image_code in enumerate(image_codes):
            code = ' '.join([str(num) for num in image_code.tolist()])
            if data['image_id'][i] in processed_ids:
                continue

            processed_ids[data['image_id'][i]] = 0

            if len(data.keys()) == 4:
                writer.write('\t'.join([data['pair_id'][i], data['image_id'][i], data['text'][i], code])+'\n')
            elif len(data.keys()) == 2:
                writer.write('\t'.join([data['image_id'][i], code])+'\n')
            else:
                raise NotImplementedError

    print(len(processed_ids))
    writer.close()

    print("finish")
    print('num_corrupted:', num_corrupted)