"""PyTorch ResNet This started as a copy of https://github.com/pytorch/vision 'resnet.py' (BSD-3-Clause) with additional dropout and dynamic global avg/max pool. ResNeXt, SE-ResNeXt, SENet, and MXNet Gluon stem/downsample variants, tiered stems added by Ross Wightman Copyright 2019, Ross Wightman """ import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.layers import DropBlock2d, DropPath, AvgPool2dSame, BlurPool2d, GroupNorm, create_attn, get_attn, \ get_act_layer, get_norm_layer, create_classifier from timm.models.helpers import build_model_with_cfg from timm.models.helpers import checkpoint_seq from timm.models import register_model, model_entrypoint __all__ = ['ResNet', 'BasicBlock', 'Bottleneck'] # model_registry will add each entrypoint fn to this def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv1', 'classifier': 'fc', **kwargs } default_cfgs = { # ResNet and Wide ResNet 'resnet10t': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet10t_176_c3-f3215ab1.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_crop_pct=0.95, test_input_size=(3, 224, 224), first_conv='conv1.0'), 'resnet14t': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet14t_176_c3-c4ed2c37.pth', input_size=(3, 176, 176), pool_size=(6, 6), test_crop_pct=0.95, test_input_size=(3, 224, 224), first_conv='conv1.0'), 'resnet18': _cfg(url='https://download.pytorch.org/models/resnet18-5c106cde.pth'), 'resnet18d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet18d_ra2-48a79e06.pth', interpolation='bicubic', first_conv='conv1.0'), 'resnet34': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth'), 'resnet34d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34d_ra2-f8dcfcaf.pth', interpolation='bicubic', first_conv='conv1.0'), 'resnet26': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth', interpolation='bicubic'), 'resnet26d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth', interpolation='bicubic', first_conv='conv1.0'), 'resnet26t': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet26t_256_ra2-6f6fa748.pth', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), 'resnet50': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth', interpolation='bicubic', crop_pct=0.95), 'resnet50d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth', interpolation='bicubic', first_conv='conv1.0'), 'resnet50t': _cfg( url='', interpolation='bicubic', first_conv='conv1.0'), 'resnet101': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth', interpolation='bicubic', crop_pct=0.95), 'resnet101d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320)), 'resnet152': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a1h-dc400468.pth', interpolation='bicubic', crop_pct=0.95), 'resnet152d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320)), 'resnet200': _cfg(url='', interpolation='bicubic'), 'resnet200d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320)), 'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'), 'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'), 'tv_resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'), 'tv_resnet152': _cfg(url='https://download.pytorch.org/models/resnet152-b121ed2d.pth'), 'wide_resnet50_2': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/wide_resnet50_racm-8234f177.pth', interpolation='bicubic'), 'wide_resnet101_2': _cfg(url='https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth'), # ResNets w/ alternative norm layers 'resnet50_gn': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_gn_a1h2-8fe6c4d0.pth', crop_pct=0.94, interpolation='bicubic'), # ResNeXt 'resnext50_32x4d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a1h-0146ab0a.pth', interpolation='bicubic', crop_pct=0.95), 'resnext50d_32x4d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth', interpolation='bicubic', first_conv='conv1.0'), 'resnext101_32x4d': _cfg(url=''), 'resnext101_32x8d': _cfg(url='https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth'), 'resnext101_64x4d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/resnext101_64x4d_c-0d0e0cc0.pth', interpolation='bicubic', crop_pct=1.0, test_input_size=(3, 288, 288)), 'tv_resnext50_32x4d': _cfg(url='https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth'), # ResNeXt models - Weakly Supervised Pretraining on Instagram Hashtags # from https://github.com/facebookresearch/WSL-Images # Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. 'ig_resnext101_32x8d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth'), 'ig_resnext101_32x16d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth'), 'ig_resnext101_32x32d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth'), 'ig_resnext101_32x48d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth'), # Semi-Supervised ResNe*t models from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models # Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. 'ssl_resnet18': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth'), 'ssl_resnet50': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth'), 'ssl_resnext50_32x4d': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth'), 'ssl_resnext101_32x4d': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth'), 'ssl_resnext101_32x8d': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth'), 'ssl_resnext101_32x16d': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth'), # Semi-Weakly Supervised ResNe*t models from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models # Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. 'swsl_resnet18': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth'), 'swsl_resnet50': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth'), 'swsl_resnext50_32x4d': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth'), 'swsl_resnext101_32x4d': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth'), 'swsl_resnext101_32x8d': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth'), 'swsl_resnext101_32x16d': _cfg( url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth'), # Efficient Channel Attention ResNets 'ecaresnet26t': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet26t_ra2-46609757.pth', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_input_size=(3, 320, 320)), 'ecaresnetlight': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnetlight-75a9c627.pth', interpolation='bicubic'), 'ecaresnet50d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet50d-93c81e3b.pth', interpolation='bicubic', first_conv='conv1.0'), 'ecaresnet50d_pruned': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet50d_p-e4fa23c2.pth', interpolation='bicubic', first_conv='conv1.0'), 'ecaresnet50t': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet50t_ra2-f7ac63c4.pth', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, test_input_size=(3, 320, 320)), 'ecaresnet101d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet101d-153dad65.pth', interpolation='bicubic', first_conv='conv1.0'), 'ecaresnet101d_pruned': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet101d_p-9e74cb91.pth', interpolation='bicubic', first_conv='conv1.0'), 'ecaresnet200d': _cfg( url='', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)), 'ecaresnet269d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet269d_320_ra2-7baa55cb.pth', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, test_input_size=(3, 352, 352)), # Efficient Channel Attention ResNeXts 'ecaresnext26t_32x4d': _cfg( url='', interpolation='bicubic', first_conv='conv1.0'), 'ecaresnext50t_32x4d': _cfg( url='', interpolation='bicubic', first_conv='conv1.0'), # Squeeze-Excitation ResNets, to eventually replace the models in senet.py 'seresnet18': _cfg( url='', interpolation='bicubic'), 'seresnet34': _cfg( url='', interpolation='bicubic'), 'seresnet50': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet50_ra_224-8efdb4bb.pth', interpolation='bicubic'), 'seresnet50t': _cfg( url='', interpolation='bicubic', first_conv='conv1.0'), 'seresnet101': _cfg( url='', interpolation='bicubic'), 'seresnet152': _cfg( url='', interpolation='bicubic'), 'seresnet152d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet152d_ra2-04464dd2.pth', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320) ), 'seresnet200d': _cfg( url='', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)), 'seresnet269d': _cfg( url='', interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)), # Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py 'seresnext26d_32x4d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26d_32x4d-80fa48a3.pth', interpolation='bicubic', first_conv='conv1.0'), 'seresnext26t_32x4d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26tn_32x4d-569cb627.pth', interpolation='bicubic', first_conv='conv1.0'), 'seresnext50_32x4d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext50_32x4d_racm-a304a460.pth', interpolation='bicubic'), 'seresnext101_32x4d': _cfg( url='', interpolation='bicubic'), 'seresnext101_32x8d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnext101_32x8d_ah-e6bc4c0a.pth', interpolation='bicubic', test_input_size=(3, 288, 288), crop_pct=1.0), 'seresnext101d_32x8d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnext101d_32x8d_ah-191d7b94.pth', interpolation='bicubic', first_conv='conv1.0', test_input_size=(3, 288, 288), crop_pct=1.0), 'senet154': _cfg( url='', interpolation='bicubic', first_conv='conv1.0'), # ResNets with anti-aliasing / blur pool 'resnetblur18': _cfg( interpolation='bicubic'), 'resnetblur50': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth', interpolation='bicubic'), 'resnetblur50d': _cfg( url='', interpolation='bicubic', first_conv='conv1.0'), 'resnetblur101d': _cfg( url='', interpolation='bicubic', first_conv='conv1.0'), 'resnetaa50': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnetaa50_a1h-4cf422b3.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0, interpolation='bicubic'), 'resnetaa50d': _cfg( url='', interpolation='bicubic', first_conv='conv1.0'), 'resnetaa101d': _cfg( url='', interpolation='bicubic', first_conv='conv1.0'), 'seresnetaa50d': _cfg( url='', interpolation='bicubic', first_conv='conv1.0'), 'seresnextaa101d_32x8d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnextaa101d_32x8d_ah-83c8ae12.pth', interpolation='bicubic', first_conv='conv1.0', test_input_size=(3, 288, 288), crop_pct=1.0), # ResNet-RS models 'resnetrs50': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs50_ema-6b53758b.pth', input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.91, test_input_size=(3, 224, 224), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs101': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs101_i192_ema-1509bbf6.pth', input_size=(3, 192, 192), pool_size=(6, 6), crop_pct=0.94, test_input_size=(3, 288, 288), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs152': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs152_i256_ema-a9aff7f9.pth', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs200': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/resnetrs200_c-6b698b88.pth', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs270': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs270_ema-b40e674c.pth', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 352, 352), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs350': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs350_i256_ema-5a1aa8f1.pth', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, test_input_size=(3, 384, 384), interpolation='bicubic', first_conv='conv1.0'), 'resnetrs420': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs420_ema-972dee69.pth', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, test_input_size=(3, 416, 416), interpolation='bicubic', first_conv='conv1.0'), } def get_padding(kernel_size, stride, dilation=1): padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 return padding def create_aa(aa_layer, channels, stride=2, enable=True): if not aa_layer or not enable: return nn.Identity() return aa_layer(stride) if issubclass(aa_layer, nn.AvgPool2d) else aa_layer(channels=channels, stride=stride) class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None, ): super(BasicBlock, self).__init__() assert cardinality == 1, 'BasicBlock only supports cardinality of 1' assert base_width == 64, 'BasicBlock does not support changing base width' first_planes = planes // reduce_first outplanes = planes * self.expansion first_dilation = first_dilation or dilation use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation) self.conv1 = nn.Conv2d( inplanes, first_planes, kernel_size=3, stride=1 if use_aa else stride, padding=first_dilation, dilation=first_dilation, bias=False) self.bn1 = norm_layer(first_planes) self.drop_block = drop_block() if drop_block is not None else nn.Identity() self.act1 = act_layer(inplace=True) self.aa = create_aa(aa_layer, channels=first_planes, stride=stride, enable=use_aa) self.conv2 = nn.Conv2d( first_planes, outplanes, kernel_size=3, padding=dilation, dilation=dilation, bias=False) self.bn2 = norm_layer(outplanes) self.se = create_attn(attn_layer, outplanes) self.act2 = act_layer(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation self.drop_path = drop_path def zero_init_last(self): if getattr(self.bn2, 'weight', None) is not None: nn.init.zeros_(self.bn2.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.bn1(x) x = self.drop_block(x) x = self.act1(x) x = self.aa(x) x = self.conv2(x) x = self.bn2(x) if self.se is not None: x = self.se(x) if self.drop_path is not None: x = self.drop_path(x) if self.downsample is not None: shortcut = self.downsample(shortcut) x += shortcut x = self.act2(x) return x class Bottleneck(nn.Module): expansion = 4 def __init__( self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None, ): super(Bottleneck, self).__init__() width = int(math.floor(planes * (base_width / 64)) * cardinality) first_planes = width // reduce_first outplanes = planes * self.expansion first_dilation = first_dilation or dilation use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation) self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False) self.bn1 = norm_layer(first_planes) self.act1 = act_layer(inplace=True) self.conv2 = nn.Conv2d( first_planes, width, kernel_size=3, stride=1 if use_aa else stride, padding=first_dilation, dilation=first_dilation, groups=cardinality, bias=False) self.bn2 = norm_layer(width) self.drop_block = drop_block() if drop_block is not None else nn.Identity() self.act2 = act_layer(inplace=True) self.aa = create_aa(aa_layer, channels=width, stride=stride, enable=use_aa) self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False) self.bn3 = norm_layer(outplanes) self.se = create_attn(attn_layer, outplanes) self.act3 = act_layer(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation self.drop_path = drop_path def zero_init_last(self): if getattr(self.bn3, 'weight', None) is not None: nn.init.zeros_(self.bn3.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.bn1(x) x = self.act1(x) x = self.conv2(x) x = self.bn2(x) x = self.drop_block(x) x = self.act2(x) x = self.aa(x) x = self.conv3(x) x = self.bn3(x) if self.se is not None: x = self.se(x) if self.drop_path is not None: x = self.drop_path(x) if self.downsample is not None: shortcut = self.downsample(shortcut) x += shortcut x = self.act3(x) return x def downsample_conv( in_channels, out_channels, kernel_size, stride=1, dilation=1, first_dilation=None, norm_layer=None, ): norm_layer = norm_layer or nn.BatchNorm2d kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size first_dilation = (first_dilation or dilation) if kernel_size > 1 else 1 p = get_padding(kernel_size, stride, first_dilation) return nn.Sequential(*[ nn.Conv2d( in_channels, out_channels, kernel_size, stride=stride, padding=p, dilation=first_dilation, bias=False), norm_layer(out_channels) ]) def downsample_avg( in_channels, out_channels, kernel_size, stride=1, dilation=1, first_dilation=None, norm_layer=None, ): norm_layer = norm_layer or nn.BatchNorm2d avg_stride = stride if dilation == 1 else 1 if stride == 1 and dilation == 1: pool = nn.Identity() else: avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) return nn.Sequential(*[ pool, nn.Conv2d(in_channels, out_channels, 1, stride=1, padding=0, bias=False), norm_layer(out_channels) ]) def drop_blocks(drop_prob=0.): return [ None, None, partial(DropBlock2d, drop_prob=drop_prob, block_size=5, gamma_scale=0.25) if drop_prob else None, partial(DropBlock2d, drop_prob=drop_prob, block_size=3, gamma_scale=1.00) if drop_prob else None] def make_blocks( block_fn, channels, block_repeats, inplanes, reduce_first=1, output_stride=32, down_kernel_size=1, avg_down=False, drop_block_rate=0., drop_path_rate=0., **kwargs, ): stages = [] feature_info = [] net_num_blocks = sum(block_repeats) net_block_idx = 0 net_stride = 4 dilation = prev_dilation = 1 for stage_idx, (planes, num_blocks, db) in enumerate(zip(channels, block_repeats, drop_blocks(drop_block_rate))): stage_name = f'layer{stage_idx + 1}' # never liked this name, but weight compat requires it stride = 1 if stage_idx == 0 else 2 if net_stride >= output_stride: dilation *= stride stride = 1 else: net_stride *= stride downsample = None if stride != 1 or inplanes != planes * block_fn.expansion: down_kwargs = dict( in_channels=inplanes, out_channels=planes * block_fn.expansion, kernel_size=down_kernel_size, stride=stride, dilation=dilation, first_dilation=prev_dilation, norm_layer=kwargs.get('norm_layer'), ) downsample = downsample_avg(**down_kwargs) if avg_down else downsample_conv(**down_kwargs) block_kwargs = dict(reduce_first=reduce_first, dilation=dilation, drop_block=db, **kwargs) blocks = [] for block_idx in range(num_blocks): downsample = downsample if block_idx == 0 else None stride = stride if block_idx == 0 else 1 block_dpr = drop_path_rate * net_block_idx / (net_num_blocks - 1) # stochastic depth linear decay rule blocks.append(block_fn( inplanes, planes, stride, downsample, first_dilation=prev_dilation, drop_path=DropPath(block_dpr) if block_dpr > 0. else None, **block_kwargs)) prev_dilation = dilation inplanes = planes * block_fn.expansion net_block_idx += 1 stages.append((stage_name, nn.Sequential(*blocks))) feature_info.append(dict(num_chs=inplanes, reduction=net_stride, module=stage_name)) return stages, feature_info class ResNet(nn.Module): """ResNet / ResNeXt / SE-ResNeXt / SE-Net This class implements all variants of ResNet, ResNeXt, SE-ResNeXt, and SENet that * have > 1 stride in the 3x3 conv layer of bottleneck * have conv-bn-act ordering This ResNet impl supports a number of stem and downsample options based on the v1c, v1d, v1e, and v1s variants included in the MXNet Gluon ResNetV1b model. The C and D variants are also discussed in the 'Bag of Tricks' paper: https://arxiv.org/pdf/1812.01187. The B variant is equivalent to torchvision default. ResNet variants (the same modifications can be used in SE/ResNeXt models as well): * normal, b - 7x7 stem, stem_width = 64, same as torchvision ResNet, NVIDIA ResNet 'v1.5', Gluon v1b * c - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64) * d - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64), average pool in downsample * e - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128), average pool in downsample * s - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128) * t - 3 layer deep 3x3 stem, stem width = 32 (24, 48, 64), average pool in downsample * tn - 3 layer deep 3x3 stem, stem width = 32 (24, 32, 64), average pool in downsample ResNeXt * normal - 7x7 stem, stem_width = 64, standard cardinality and base widths * same c,d, e, s variants as ResNet can be enabled SE-ResNeXt * normal - 7x7 stem, stem_width = 64 * same c, d, e, s variants as ResNet can be enabled SENet-154 - 3 layer deep 3x3 stem (same as v1c-v1s), stem_width = 64, cardinality=64, reduction by 2 on width of first bottleneck convolution, 3x3 downsample convs after first block """ def __init__( self, block, layers, num_classes=1000, in_chans=3, output_stride=32, global_pool='avg', cardinality=1, base_width=64, stem_width=64, stem_type='', replace_stem_pool=False, block_reduce_first=1, down_kernel_size=1, avg_down=False, act_layer=nn.ReLU, norm_layer=None, aa_layer=None, drop_rate=0.0, drop_path_rate=0., drop_block_rate=0., zero_init_last=True, block_args=None, ): """ Args: block (nn.Module): class for the residual block. Options are BasicBlock, Bottleneck. layers (List[int]) : number of layers in each block num_classes (int): number of classification classes (default 1000) in_chans (int): number of input (color) channels. (default 3) output_stride (int): output stride of the network, 32, 16, or 8. (default 32) global_pool (str): Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' (default 'avg') cardinality (int): number of convolution groups for 3x3 conv in Bottleneck. (default 1) base_width (int): bottleneck channels factor. `planes * base_width / 64 * cardinality` (default 64) stem_width (int): number of channels in stem convolutions (default 64) stem_type (str): The type of stem (default ''): * '', default - a single 7x7 conv with a width of stem_width * 'deep' - three 3x3 convolution layers of widths stem_width, stem_width, stem_width * 2 * 'deep_tiered' - three 3x3 conv layers of widths stem_width//4 * 3, stem_width, stem_width * 2 replace_stem_pool (bool): replace stem max-pooling layer with a 3x3 stride-2 convolution block_reduce_first (int): Reduction factor for first convolution output width of residual blocks, 1 for all archs except senets, where 2 (default 1) down_kernel_size (int): kernel size of residual block downsample path, 1x1 for most, 3x3 for senets (default: 1) avg_down (bool): use avg pooling for projection skip connection between stages/downsample (default False) act_layer (str, nn.Module): activation layer norm_layer (str, nn.Module): normalization layer aa_layer (nn.Module): anti-aliasing layer drop_rate (float): Dropout probability before classifier, for training (default 0.) drop_path_rate (float): Stochastic depth drop-path rate (default 0.) drop_block_rate (float): Drop block rate (default 0.) zero_init_last (bool): zero-init the last weight in residual path (usually last BN affine weight) block_args (dict): Extra kwargs to pass through to block module """ super(ResNet, self).__init__() block_args = block_args or dict() assert output_stride in (8, 16, 32) self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False act_layer = get_act_layer(act_layer) if norm_layer is None: norm_layer = nn.BatchNorm2d norm_layer = get_norm_layer(norm_layer) # Stem deep_stem = 'deep' in stem_type inplanes = stem_width * 2 if deep_stem else 64 if deep_stem: stem_chs = (stem_width, stem_width) if 'tiered' in stem_type: stem_chs = (3 * (stem_width // 4), stem_width) self.conv1 = nn.Sequential(*[ nn.Conv2d(in_chans, stem_chs[0], 3, stride=2, padding=1, bias=False), norm_layer(stem_chs[0]), act_layer(inplace=True), nn.Conv2d(stem_chs[0], stem_chs[1], 3, stride=1, padding=1, bias=False), norm_layer(stem_chs[1]), act_layer(inplace=True), nn.Conv2d(stem_chs[1], inplanes, 3, stride=1, padding=1, bias=False)]) else: self.conv1 = nn.Conv2d(in_chans, inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(inplanes) self.act1 = act_layer(inplace=True) self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')] # Stem pooling. The name 'maxpool' remains for weight compatibility. if replace_stem_pool: self.maxpool = nn.Sequential(*filter(None, [ nn.Conv2d(inplanes, inplanes, 3, stride=1 if aa_layer else 2, padding=1, bias=False), create_aa(aa_layer, channels=inplanes, stride=2) if aa_layer is not None else None, norm_layer(inplanes), act_layer(inplace=True) ])) else: if aa_layer is not None: if issubclass(aa_layer, nn.AvgPool2d): self.maxpool = aa_layer(2) else: self.maxpool = nn.Sequential(*[ nn.MaxPool2d(kernel_size=3, stride=1, padding=1), aa_layer(channels=inplanes, stride=2)]) else: self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Feature Blocks channels = [64, 128, 256, 512] stage_modules, stage_feature_info = make_blocks( block, channels, layers, inplanes, cardinality=cardinality, base_width=base_width, output_stride=output_stride, reduce_first=block_reduce_first, avg_down=avg_down, down_kernel_size=down_kernel_size, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block_rate=drop_block_rate, drop_path_rate=drop_path_rate, **block_args, ) for stage in stage_modules: self.add_module(*stage) # layer1, layer2, etc self.feature_info.extend(stage_feature_info) # Head (Pooling and Classifier) self.num_features = 512 * block.expansion self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) self.init_weights(zero_init_last=zero_init_last) @staticmethod def from_pretrained(model_name: str, load_weights=True, **kwargs) -> 'ResNet': entry_fn = model_entrypoint(model_name, 'resnet') return entry_fn(pretrained=not load_weights, **kwargs) @torch.jit.ignore def init_weights(self, zero_init_last=True): for n, m in self.named_modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if zero_init_last: for m in self.modules(): if hasattr(m, 'zero_init_last'): m.zero_init_last() @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict(stem=r'^conv1|bn1|maxpool', blocks=r'^layer(\d+)' if coarse else r'^layer(\d+)\.(\d+)') return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self, name_only=False): return 'fc' if name_only else self.fc def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) def forward_features(self, x): x = self.conv1(x) x = self.bn1(x) x = self.act1(x) x = self.maxpool(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq([self.layer1, self.layer2, self.layer3, self.layer4], x, flatten=True) else: x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def forward_head(self, x, pre_logits: bool = False): x = self.global_pool(x) if self.drop_rate: x = F.dropout(x, p=float(self.drop_rate), training=self.training) return x if pre_logits else self.fc(x) def forward(self, x): x = self.forward_features(x) # x = self.forward_head(x) return x def _create_resnet(variant, pretrained=False, **kwargs): return build_model_with_cfg(ResNet, variant, pretrained, **kwargs) @register_model def resnet10t(pretrained=False, **kwargs): """Constructs a ResNet-10-T model. """ model_args = dict(block=BasicBlock, layers=[1, 1, 1, 1], stem_width=32, stem_type='deep_tiered', avg_down=True) return _create_resnet('resnet10t', pretrained, **dict(model_args, **kwargs)) @register_model def resnet14t(pretrained=False, **kwargs): """Constructs a ResNet-14-T model. """ model_args = dict(block=Bottleneck, layers=[1, 1, 1, 1], stem_width=32, stem_type='deep_tiered', avg_down=True) return _create_resnet('resnet14t', pretrained, **dict(model_args, **kwargs)) @register_model def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. """ model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2]) return _create_resnet('resnet18', pretrained, **dict(model_args, **kwargs)) @register_model def resnet18d(pretrained=False, **kwargs): """Constructs a ResNet-18-D model. """ model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnet18d', pretrained, **dict(model_args, **kwargs)) @register_model def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. """ model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3]) return _create_resnet('resnet34', pretrained, **dict(model_args, **kwargs)) @register_model def resnet34d(pretrained=False, **kwargs): """Constructs a ResNet-34-D model. """ model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnet34d', pretrained, **dict(model_args, **kwargs)) @register_model def resnet26(pretrained=False, **kwargs): """Constructs a ResNet-26 model. """ model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2]) return _create_resnet('resnet26', pretrained, **dict(model_args, **kwargs)) @register_model def resnet26t(pretrained=False, **kwargs): """Constructs a ResNet-26-T model. """ model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep_tiered', avg_down=True) return _create_resnet('resnet26t', pretrained, **dict(model_args, **kwargs)) @register_model def resnet26d(pretrained=False, **kwargs): """Constructs a ResNet-26-D model. """ model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnet26d', pretrained, **dict(model_args, **kwargs)) @register_model def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) return _create_resnet('resnet50', pretrained, **dict(model_args, **kwargs)) @register_model def resnet50d(pretrained=False, **kwargs) -> ResNet: """Constructs a ResNet-50-D model. """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnet50d', pretrained, **dict(model_args, **kwargs)) @register_model def resnet50t(pretrained=False, **kwargs): """Constructs a ResNet-50-T model. """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered', avg_down=True) return _create_resnet('resnet50t', pretrained, **dict(model_args, **kwargs)) @register_model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3]) return _create_resnet('resnet101', pretrained, **dict(model_args, **kwargs)) @register_model def resnet101d(pretrained=False, **kwargs): """Constructs a ResNet-101-D model. """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnet101d', pretrained, **dict(model_args, **kwargs)) @register_model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. """ model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3]) return _create_resnet('resnet152', pretrained, **dict(model_args, **kwargs)) @register_model def resnet152d(pretrained=False, **kwargs): """Constructs a ResNet-152-D model. """ model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnet152d', pretrained, **dict(model_args, **kwargs)) @register_model def resnet200(pretrained=False, **kwargs): """Constructs a ResNet-200 model. """ model_args = dict(block=Bottleneck, layers=[3, 24, 36, 3]) return _create_resnet('resnet200', pretrained, **dict(model_args, **kwargs)) @register_model def resnet200d(pretrained=False, **kwargs): """Constructs a ResNet-200-D model. """ model_args = dict(block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnet200d', pretrained, **dict(model_args, **kwargs)) @register_model def tv_resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model with original Torchvision weights. """ model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3]) return _create_resnet('tv_resnet34', pretrained, **dict(model_args, **kwargs)) @register_model def tv_resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model with original Torchvision weights. """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) return _create_resnet('tv_resnet50', pretrained, **dict(model_args, **kwargs)) @register_model def tv_resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model w/ Torchvision pretrained weights. """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3]) return _create_resnet('tv_resnet101', pretrained, **dict(model_args, **kwargs)) @register_model def tv_resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model w/ Torchvision pretrained weights. """ model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3]) return _create_resnet('tv_resnet152', pretrained, **dict(model_args, **kwargs)) @register_model def wide_resnet50_2(pretrained=False, **kwargs): """Constructs a Wide ResNet-50-2 model. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], base_width=128) return _create_resnet('wide_resnet50_2', pretrained, **dict(model_args, **kwargs)) @register_model def wide_resnet101_2(pretrained=False, **kwargs): """Constructs a Wide ResNet-101-2 model. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same. """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], base_width=128) return _create_resnet('wide_resnet101_2', pretrained, **dict(model_args, **kwargs)) @register_model def resnet50_gn(pretrained=False, **kwargs): """Constructs a ResNet-50 model w/ GroupNorm """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) return _create_resnet('resnet50_gn', pretrained, norm_layer=GroupNorm, **model_args) @register_model def resnext50_32x4d(pretrained=False, **kwargs): """Constructs a ResNeXt50-32x4d model. """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4) return _create_resnet('resnext50_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def resnext50d_32x4d(pretrained=False, **kwargs): """Constructs a ResNeXt50d-32x4d model. ResNext50 w/ deep stem & avg pool downsample """ model_args = dict( block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnext50d_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def resnext101_32x4d(pretrained=False, **kwargs): """Constructs a ResNeXt-101 32x4d model. """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4) return _create_resnet('resnext101_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def resnext101_32x8d(pretrained=False, **kwargs): """Constructs a ResNeXt-101 32x8d model. """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8) return _create_resnet('resnext101_32x8d', pretrained, **dict(model_args, **kwargs)) @register_model def resnext101_64x4d(pretrained=False, **kwargs): """Constructs a ResNeXt101-64x4d model. """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=64, base_width=4) return _create_resnet('resnext101_64x4d', pretrained, **dict(model_args, **kwargs)) @register_model def tv_resnext50_32x4d(pretrained=False, **kwargs): """Constructs a ResNeXt50-32x4d model with original Torchvision weights. """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4) return _create_resnet('tv_resnext50_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def ig_resnext101_32x8d(pretrained=False, **kwargs): """Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data and finetuned on ImageNet from Figure 5 in `"Exploring the Limits of Weakly Supervised Pretraining" `_ Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8) return _create_resnet('ig_resnext101_32x8d', pretrained, **dict(model_args, **kwargs)) @register_model def ig_resnext101_32x16d(pretrained=False, **kwargs): """Constructs a ResNeXt-101 32x16 model pre-trained on weakly-supervised data and finetuned on ImageNet from Figure 5 in `"Exploring the Limits of Weakly Supervised Pretraining" `_ Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16) return _create_resnet('ig_resnext101_32x16d', pretrained, **dict(model_args, **kwargs)) @register_model def ig_resnext101_32x32d(pretrained=False, **kwargs): """Constructs a ResNeXt-101 32x32 model pre-trained on weakly-supervised data and finetuned on ImageNet from Figure 5 in `"Exploring the Limits of Weakly Supervised Pretraining" `_ Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=32) return _create_resnet('ig_resnext101_32x32d', pretrained, **dict(model_args, **kwargs)) @register_model def ig_resnext101_32x48d(pretrained=False, **kwargs): """Constructs a ResNeXt-101 32x48 model pre-trained on weakly-supervised data and finetuned on ImageNet from Figure 5 in `"Exploring the Limits of Weakly Supervised Pretraining" `_ Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=48) return _create_resnet('ig_resnext101_32x48d', pretrained, **dict(model_args, **kwargs)) @register_model def ssl_resnet18(pretrained=False, **kwargs): """Constructs a semi-supervised ResNet-18 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2]) return _create_resnet('ssl_resnet18', pretrained, **dict(model_args, **kwargs)) @register_model def ssl_resnet50(pretrained=False, **kwargs): """Constructs a semi-supervised ResNet-50 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) return _create_resnet('ssl_resnet50', pretrained, **dict(model_args, **kwargs)) @register_model def ssl_resnext50_32x4d(pretrained=False, **kwargs): """Constructs a semi-supervised ResNeXt-50 32x4 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4) return _create_resnet('ssl_resnext50_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def ssl_resnext101_32x4d(pretrained=False, **kwargs): """Constructs a semi-supervised ResNeXt-101 32x4 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4) return _create_resnet('ssl_resnext101_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def ssl_resnext101_32x8d(pretrained=False, **kwargs): """Constructs a semi-supervised ResNeXt-101 32x8 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8) return _create_resnet('ssl_resnext101_32x8d', pretrained, **dict(model_args, **kwargs)) @register_model def ssl_resnext101_32x16d(pretrained=False, **kwargs): """Constructs a semi-supervised ResNeXt-101 32x16 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16) return _create_resnet('ssl_resnext101_32x16d', pretrained, **dict(model_args, **kwargs)) @register_model def swsl_resnet18(pretrained=False, **kwargs): """Constructs a semi-weakly supervised Resnet-18 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2]) return _create_resnet('swsl_resnet18', pretrained, **dict(model_args, **kwargs)) @register_model def swsl_resnet50(pretrained=False, **kwargs): """Constructs a semi-weakly supervised ResNet-50 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) return _create_resnet('swsl_resnet50', pretrained, **dict(model_args, **kwargs)) @register_model def swsl_resnext50_32x4d(pretrained=False, **kwargs): """Constructs a semi-weakly supervised ResNeXt-50 32x4 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4) return _create_resnet('swsl_resnext50_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def swsl_resnext101_32x4d(pretrained=False, **kwargs): """Constructs a semi-weakly supervised ResNeXt-101 32x4 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4) return _create_resnet('swsl_resnext101_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def swsl_resnext101_32x8d(pretrained=False, **kwargs): """Constructs a semi-weakly supervised ResNeXt-101 32x8 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8) return _create_resnet('swsl_resnext101_32x8d', pretrained, **dict(model_args, **kwargs)) @register_model def swsl_resnext101_32x16d(pretrained=False, **kwargs): """Constructs a semi-weakly supervised ResNeXt-101 32x16 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ """ model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16) return _create_resnet('swsl_resnext101_32x16d', pretrained, **dict(model_args, **kwargs)) @register_model def ecaresnet26t(pretrained=False, **kwargs): """Constructs an ECA-ResNeXt-26-T model. This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels in the deep stem and ECA attn. """ model_args = dict( block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnet26t', pretrained, **dict(model_args, **kwargs)) @register_model def ecaresnet50d(pretrained=False, **kwargs): """Constructs a ResNet-50-D model with eca. """ model_args = dict( block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnet50d', pretrained, **dict(model_args, **kwargs)) @register_model def ecaresnet50d_pruned(pretrained=False, **kwargs): """Constructs a ResNet-50-D model pruned with eca. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ model_args = dict( block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnet50d_pruned', pretrained, pruned=True, **dict(model_args, **kwargs)) @register_model def ecaresnet50t(pretrained=False, **kwargs): """Constructs an ECA-ResNet-50-T model. Like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels in the deep stem and ECA attn. """ model_args = dict( block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnet50t', pretrained, **dict(model_args, **kwargs)) @register_model def ecaresnetlight(pretrained=False, **kwargs): """Constructs a ResNet-50-D light model with eca. """ model_args = dict( block=Bottleneck, layers=[1, 1, 11, 3], stem_width=32, avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnetlight', pretrained, **dict(model_args, **kwargs)) @register_model def ecaresnet101d(pretrained=False, **kwargs): """Constructs a ResNet-101-D model with eca. """ model_args = dict( block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnet101d', pretrained, **dict(model_args, **kwargs)) @register_model def ecaresnet101d_pruned(pretrained=False, **kwargs): """Constructs a ResNet-101-D model pruned with eca. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ model_args = dict( block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnet101d_pruned', pretrained, pruned=True, **dict(model_args, **kwargs)) @register_model def ecaresnet200d(pretrained=False, **kwargs): """Constructs a ResNet-200-D model with ECA. """ model_args = dict( block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnet200d', pretrained, **dict(model_args, **kwargs)) @register_model def ecaresnet269d(pretrained=False, **kwargs): """Constructs a ResNet-269-D model with ECA. """ model_args = dict( block=Bottleneck, layers=[3, 30, 48, 8], stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnet269d', pretrained, **dict(model_args, **kwargs)) @register_model def ecaresnext26t_32x4d(pretrained=False, **kwargs): """Constructs an ECA-ResNeXt-26-T model. This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels in the deep stem. This model replaces SE module with the ECA module """ model_args = dict( block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnext26t_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def ecaresnext50t_32x4d(pretrained=False, **kwargs): """Constructs an ECA-ResNeXt-50-T model. This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels in the deep stem. This model replaces SE module with the ECA module """ model_args = dict( block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) return _create_resnet('ecaresnext50t_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnet18(pretrained=False, **kwargs): model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], block_args=dict(attn_layer='se')) return _create_resnet('seresnet18', pretrained, **dict(model_args, **kwargs)) @register_model def seresnet34(pretrained=False, **kwargs): model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], block_args=dict(attn_layer='se')) return _create_resnet('seresnet34', pretrained, **dict(model_args, **kwargs)) @register_model def seresnet50(pretrained=False, **kwargs): model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], block_args=dict(attn_layer='se')) return _create_resnet('seresnet50', pretrained, **dict(model_args, **kwargs)) @register_model def seresnet50t(pretrained=False, **kwargs): model_args = dict( block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='se')) return _create_resnet('seresnet50t', pretrained, **dict(model_args, **kwargs)) @register_model def seresnet101(pretrained=False, **kwargs): model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], block_args=dict(attn_layer='se')) return _create_resnet('seresnet101', pretrained, **dict(model_args, **kwargs)) @register_model def seresnet152(pretrained=False, **kwargs): model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], block_args=dict(attn_layer='se')) return _create_resnet('seresnet152', pretrained, **dict(model_args, **kwargs)) @register_model def seresnet152d(pretrained=False, **kwargs): model_args = dict( block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) return _create_resnet('seresnet152d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnet200d(pretrained=False, **kwargs): """Constructs a ResNet-200-D model with SE attn. """ model_args = dict( block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) return _create_resnet('seresnet200d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnet269d(pretrained=False, **kwargs): """Constructs a ResNet-269-D model with SE attn. """ model_args = dict( block=Bottleneck, layers=[3, 30, 48, 8], stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) return _create_resnet('seresnet269d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnext26d_32x4d(pretrained=False, **kwargs): """Constructs a SE-ResNeXt-26-D model.` This is technically a 28 layer ResNet, using the 'D' modifier from Gluon / bag-of-tricks for combination of deep stem and avg_pool in downsample. """ model_args = dict( block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) return _create_resnet('seresnext26d_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnext26t_32x4d(pretrained=False, **kwargs): """Constructs a SE-ResNet-26-T model. This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels in the deep stem. """ model_args = dict( block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='se')) return _create_resnet('seresnext26t_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnext26tn_32x4d(pretrained=False, **kwargs): """Constructs a SE-ResNeXt-26-T model. NOTE I deprecated previous 't' model defs and replaced 't' with 'tn', this was the only tn model of note so keeping this def for backwards compat with any uses out there. Old 't' model is lost. """ return seresnext26t_32x4d(pretrained=pretrained, **kwargs) @register_model def seresnext50_32x4d(pretrained=False, **kwargs): model_args = dict( block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, block_args=dict(attn_layer='se')) return _create_resnet('seresnext50_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnext101_32x4d(pretrained=False, **kwargs): model_args = dict( block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4, block_args=dict(attn_layer='se')) return _create_resnet('seresnext101_32x4d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnext101_32x8d(pretrained=False, **kwargs): model_args = dict( block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, block_args=dict(attn_layer='se')) return _create_resnet('seresnext101_32x8d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnext101d_32x8d(pretrained=False, **kwargs): model_args = dict( block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) return _create_resnet('seresnext101d_32x8d', pretrained, **dict(model_args, **kwargs)) @register_model def senet154(pretrained=False, **kwargs): model_args = dict( block=Bottleneck, layers=[3, 8, 36, 3], cardinality=64, base_width=4, stem_type='deep', down_kernel_size=3, block_reduce_first=2, block_args=dict(attn_layer='se')) return _create_resnet('senet154', pretrained, **dict(model_args, **kwargs)) @register_model def resnetblur18(pretrained=False, **kwargs): """Constructs a ResNet-18 model with blur anti-aliasing """ model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], aa_layer=BlurPool2d) return _create_resnet('resnetblur18', pretrained, **dict(model_args, **kwargs)) @register_model def resnetblur50(pretrained=False, **kwargs): """Constructs a ResNet-50 model with blur anti-aliasing """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=BlurPool2d) return _create_resnet('resnetblur50', pretrained, **dict(model_args, **kwargs)) @register_model def resnetblur50d(pretrained=False, **kwargs): """Constructs a ResNet-50-D model with blur anti-aliasing """ model_args = dict( block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=BlurPool2d, stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnetblur50d', pretrained, **dict(model_args, **kwargs)) @register_model def resnetblur101d(pretrained=False, **kwargs): """Constructs a ResNet-101-D model with blur anti-aliasing """ model_args = dict( block=Bottleneck, layers=[3, 4, 23, 3], aa_layer=BlurPool2d, stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnetblur101d', pretrained, **dict(model_args, **kwargs)) @register_model def resnetaa34d(pretrained=False, **kwargs): """Constructs a ResNet-34-D model w/ avgpool anti-aliasing """ model_args = dict( block=BasicBlock, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnetaa34d', pretrained, **dict(model_args, **kwargs)) @register_model def resnetaa50(pretrained=False, **kwargs): """Constructs a ResNet-50 model with avgpool anti-aliasing """ model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d) return _create_resnet('resnetaa50', pretrained, **dict(model_args, **kwargs)) @register_model def resnetaa50d(pretrained=False, **kwargs): """Constructs a ResNet-50-D model with avgpool anti-aliasing """ model_args = dict( block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnetaa50d', pretrained, **dict(model_args, **kwargs)) @register_model def resnetaa101d(pretrained=False, **kwargs): """Constructs a ResNet-101-D model with avgpool anti-aliasing """ model_args = dict( block=Bottleneck, layers=[3, 4, 23, 3], aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True) return _create_resnet('resnetaa101d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnetaa50d(pretrained=False, **kwargs): """Constructs a SE=ResNet-50-D model with avgpool anti-aliasing """ model_args = dict( block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) return _create_resnet('seresnetaa50d', pretrained, **dict(model_args, **kwargs)) @register_model def seresnextaa101d_32x8d(pretrained=False, **kwargs): """Constructs a SE=ResNeXt-101-D 32x8d model with avgpool anti-aliasing """ model_args = dict( block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, stem_width=32, stem_type='deep', avg_down=True, aa_layer=nn.AvgPool2d, block_args=dict(attn_layer='se')) return _create_resnet('seresnextaa101d_32x8d', pretrained, **dict(model_args, **kwargs)) @register_model def resnetrs50(pretrained=False, **kwargs): """Constructs a ResNet-RS-50 model. Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs """ attn_layer = partial(get_attn('se'), rd_ratio=0.25) model_args = dict( block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) return _create_resnet('resnetrs50', pretrained, **dict(model_args, **kwargs)) @register_model def resnetrs101(pretrained=False, **kwargs): """Constructs a ResNet-RS-101 model. Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs """ attn_layer = partial(get_attn('se'), rd_ratio=0.25) model_args = dict( block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) return _create_resnet('resnetrs101', pretrained, **dict(model_args, **kwargs)) @register_model def resnetrs152(pretrained=False, **kwargs): """Constructs a ResNet-RS-152 model. Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs """ attn_layer = partial(get_attn('se'), rd_ratio=0.25) model_args = dict( block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) return _create_resnet('resnetrs152', pretrained, **dict(model_args, **kwargs)) @register_model def resnetrs200(pretrained=False, **kwargs): """Constructs a ResNet-RS-200 model. Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs """ attn_layer = partial(get_attn('se'), rd_ratio=0.25) model_args = dict( block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) return _create_resnet('resnetrs200', pretrained, **dict(model_args, **kwargs)) @register_model def resnetrs270(pretrained=False, **kwargs): """Constructs a ResNet-RS-270 model. Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs """ attn_layer = partial(get_attn('se'), rd_ratio=0.25) model_args = dict( block=Bottleneck, layers=[4, 29, 53, 4], stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) return _create_resnet('resnetrs270', pretrained, **dict(model_args, **kwargs)) @register_model def resnetrs350(pretrained=False, **kwargs): """Constructs a ResNet-RS-350 model. Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs """ attn_layer = partial(get_attn('se'), rd_ratio=0.25) model_args = dict( block=Bottleneck, layers=[4, 36, 72, 4], stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) return _create_resnet('resnetrs350', pretrained, **dict(model_args, **kwargs)) @register_model def resnetrs420(pretrained=False, **kwargs): """Constructs a ResNet-RS-420 model Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs """ attn_layer = partial(get_attn('se'), rd_ratio=0.25) model_args = dict( block=Bottleneck, layers=[4, 44, 87, 4], stem_width=32, stem_type='deep', replace_stem_pool=True, avg_down=True, block_args=dict(attn_layer=attn_layer)) return _create_resnet('resnetrs420', pretrained, **dict(model_args, **kwargs))