Spaces:
Build error
Build error
""" Optimizer Factory w/ Custom Weight Decay | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
from torch import optim as optim | |
from .adafactor import Adafactor | |
from .adahessian import Adahessian | |
from .adamp import AdamP | |
from .lookahead import Lookahead | |
from .nadam import Nadam | |
from .novograd import NovoGrad | |
from .nvnovograd import NvNovoGrad | |
from .radam import RAdam | |
from .rmsprop_tf import RMSpropTF | |
from .sgdp import SGDP | |
try: | |
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD | |
has_apex = True | |
except ImportError: | |
has_apex = False | |
def add_weight_decay(model, weight_decay=1e-5, skip_list=()): | |
decay = [] | |
no_decay = [] | |
for name, param in model.named_parameters(): | |
if not param.requires_grad: | |
continue # frozen weights | |
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: | |
no_decay.append(param) | |
else: | |
decay.append(param) | |
return [ | |
{'params': no_decay, 'weight_decay': 0.}, | |
{'params': decay, 'weight_decay': weight_decay}] | |
def create_optimizer(args, model, filter_bias_and_bn=True, config=None): | |
opt_lower = args.opt.lower() | |
weight_decay = args.weight_decay | |
customized_lr = config.get('customized_lr', False) | |
prompt_lr = config.get('prompt_lr', args.lr) | |
vis_lr = config.get('vis_lr', args.lr) | |
text_lr = config.get('text_lr', args.lr) | |
connector_lr = config.get('connector_lr', args.lr) | |
adapter_lr = config.get('adapter_lr', args.lr) | |
if customized_lr: | |
parameters = [] | |
targets = ['connector', 'model_vision', 'model_text', 'prompt'] | |
# if prompt_lr is not None: | |
# targets.append('prompt') | |
# promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0].split('.')[0]] | |
# parameters.append({'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay}) | |
params = {'connector': [], 'model_vision': [], 'model_text': [], 'prompt': [], 'other': []} | |
for kv in model.named_parameters(): | |
if 'connector' in kv[0].split('.')[0]: | |
params['connector'].append(kv[1]) | |
elif 'model_vision' in kv[0].split('.')[0]: | |
params['model_vision'].append(kv[1]) | |
elif 'model_text' in kv[0].split('.')[0]: | |
params['model_text'].append(kv[1]) | |
elif 'prompt' in kv[0].split('.')[0]: | |
params['prompt'].append(kv[1]) | |
else: | |
params['other'].append(kv[1]) | |
# connector_params = [kv[1] for kv in model.named_parameters() if 'connector' in kv[0].split('.')[0]] | |
parameters.append({'params': params['connector'], 'lr': connector_lr, 'weight_decay': weight_decay}) | |
print('connector', len(params['connector'])) | |
# model_vision_params = [kv[1] for kv in model.named_parameters() if 'model_vision' in kv[0].split('.')[0]] | |
parameters.append({'params': params['model_vision'], 'lr': vis_lr, 'weight_decay': weight_decay}) | |
print('model_vision', len(params['model_vision'])) | |
# model_text_params = [kv[1] for kv in model.named_parameters() if 'model_text' in kv[0].split('.')[0]] | |
parameters.append({'params': params['model_text'], 'lr': text_lr, 'weight_decay': weight_decay}) | |
print('model_text', len(params['model_text'])) | |
parameters.append({'params': params['prompt'], 'lr': prompt_lr, 'weight_decay': weight_decay}) | |
print('prompt_lr', len(params['prompt'])) | |
# other_params = [kv[1] for kv in model.named_parameters() if any(t in kv[0].split('.')[0] for t in targets)] | |
parameters.append({'params': params['other']}) | |
print('other', len(params['other'])) | |
print(connector_lr, vis_lr, text_lr, prompt_lr, "optim") | |
elif config.get('adapter_lr', False) and config.get('prompt_lr', False): | |
adapter_params = [kv[1] for kv in model.named_parameters() if 'adapter' in kv[0]] | |
promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0]] | |
other_params = [kv[1] for kv in model.named_parameters() if 'adapter' not in kv[0] and 'prompt' not in kv[0]] | |
parameters = [ | |
{'params': other_params}, | |
{'params': adapter_params, 'lr': adapter_lr, 'weight_decay': weight_decay}, | |
{'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay} | |
] | |
elif config.get('adapter_lr', False): | |
adapter_params = [kv[1] for kv in model.named_parameters() if 'adapter' in kv[0]] | |
other_params = [kv[1] for kv in model.named_parameters() if 'adapter' not in kv[0]] | |
parameters = [ | |
{'params': other_params}, | |
{'params': adapter_params, 'lr': adapter_lr, 'weight_decay': weight_decay} | |
] | |
elif config.get('prompt_lr', False): | |
promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0]] | |
other_params = [kv[1] for kv in model.named_parameters() if 'prompt' not in kv[0]] | |
parameters = [ | |
{'params': other_params}, | |
{'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay} | |
] | |
elif weight_decay and filter_bias_and_bn: | |
skip = {} | |
if hasattr(model, 'no_weight_decay'): | |
skip = model.no_weight_decay() | |
parameters = add_weight_decay(model, weight_decay, skip) | |
weight_decay = 0. | |
else: | |
parameters = model.parameters() | |
if 'fused' in opt_lower: | |
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' | |
opt_args = dict(lr=args.lr, weight_decay=weight_decay) | |
if hasattr(args, 'opt_eps') and args.opt_eps is not None: | |
opt_args['eps'] = args.opt_eps | |
if hasattr(args, 'opt_betas') and args.opt_betas is not None: | |
opt_args['betas'] = args.opt_betas | |
if hasattr(args, 'opt_args') and args.opt_args is not None: | |
opt_args.update(args.opt_args) | |
opt_split = opt_lower.split('_') | |
opt_lower = opt_split[-1] | |
if opt_lower == 'sgd' or opt_lower == 'nesterov': | |
opt_args.pop('eps', None) | |
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) | |
elif opt_lower == 'momentum': | |
opt_args.pop('eps', None) | |
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) | |
elif opt_lower == 'adam': | |
optimizer = optim.Adam(parameters, **opt_args) | |
elif opt_lower == 'adamw': | |
optimizer = optim.AdamW(parameters, **opt_args) | |
elif opt_lower == 'nadam': | |
optimizer = Nadam(parameters, **opt_args) | |
elif opt_lower == 'radam': | |
optimizer = RAdam(parameters, **opt_args) | |
elif opt_lower == 'adamp': | |
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) | |
elif opt_lower == 'sgdp': | |
optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) | |
elif opt_lower == 'adadelta': | |
optimizer = optim.Adadelta(parameters, **opt_args) | |
elif opt_lower == 'adafactor': | |
if not args.lr: | |
opt_args['lr'] = None | |
optimizer = Adafactor(parameters, **opt_args) | |
elif opt_lower == 'adahessian': | |
optimizer = Adahessian(parameters, **opt_args) | |
elif opt_lower == 'rmsprop': | |
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) | |
elif opt_lower == 'rmsproptf': | |
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) | |
elif opt_lower == 'novograd': | |
optimizer = NovoGrad(parameters, **opt_args) | |
elif opt_lower == 'nvnovograd': | |
optimizer = NvNovoGrad(parameters, **opt_args) | |
elif opt_lower == 'fusedsgd': | |
opt_args.pop('eps', None) | |
optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) | |
elif opt_lower == 'fusedmomentum': | |
opt_args.pop('eps', None) | |
optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) | |
elif opt_lower == 'fusedadam': | |
optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) | |
elif opt_lower == 'fusedadamw': | |
optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) | |
elif opt_lower == 'fusedlamb': | |
optimizer = FusedLAMB(parameters, **opt_args) | |
elif opt_lower == 'fusednovograd': | |
opt_args.setdefault('betas', (0.95, 0.98)) | |
optimizer = FusedNovoGrad(parameters, **opt_args) | |
else: | |
assert False and "Invalid optimizer" | |
raise ValueError | |
if len(opt_split) > 1: | |
if opt_split[0] == 'lookahead': | |
optimizer = Lookahead(optimizer) | |
return optimizer | |