import os

os.system('cd TimeSformer;'
          'pip install .; cd ..')

os.system('ls -l')
os.system('pwd')

import os, sys
sys.path.append("/home/user/app/TimeSformer/")

import timesformer


import torch
from torchvision import transforms


from transformers import AutoTokenizer


from PIL import Image
import json 
import os

from torchvision import transforms

from models.epalm import ePALM

import os

from transformers import AutoTokenizer

# import ruamel_yaml as yaml
from ruamel.yaml import YAML

import torch
import gradio as gr

import torchaudio 

yaml=YAML(typ='safe')



use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
device_type = 'cuda' if use_cuda else 'cpu'

## Load model

### Captioning 
config = 'configs/audio/ePALM_audio_caption.yaml'
config = yaml.load(open(config, 'r'))

text_model = 'facebook/opt-2.7b' 
vision_model_name = 'ast'


start_layer_idx = 19
end_layer_idx = 31
low_cpu = True 
MODEL = ePALM(opt_model_name=text_model, 
               vision_model_name=vision_model_name, 
               use_vis_prefix=True, 
               start_layer_idx=start_layer_idx, 
               end_layer_idx=end_layer_idx, 
               return_hidden_state_vision=True, 
               config=config,
               low_cpu=low_cpu
)
print("Model Built")
MODEL.to(device)

checkpoint_path = 'checkpoints/float32/ePALM_audio_caption/checkpoint_best.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu') 
state_dict = checkpoint['model']
msg = MODEL.load_state_dict(state_dict,strict=False)  

MODEL.bfloat16()





## Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(text_model, use_fast=False)
eos_token = tokenizer.eos_token
pad_token = tokenizer.pad_token

special_answer_token = '</a>'

special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
tokenizer.add_special_tokens(special_tokens_dict)





def read_audio(path):
        
    melbins = 128
    target_length = 1024
    skip_norm = False
    norm_mean = -4.2677393
    norm_std = 4.5689974

    waveform, sr = torchaudio.load(path)
    waveform = waveform - waveform.mean()

    # audio 
    fbank = torchaudio.compliance.kaldi.fbank(waveform, htk_compat=True, sample_frequency=sr, use_energy=False,
                                                window_type='hanning', num_mel_bins=melbins, dither=0.0, 
                                                frame_shift=10) 
                
    n_frames = fbank.shape[0]

    p = target_length - n_frames

    # cut and pad
    if p > 0:
        m = torch.nn.ZeroPad2d((0, 0, 0, p))
        fbank = m(fbank)
    elif p < 0:
        fbank = fbank[0:target_length, :]




    # SpecAug, not do for eval set

    fbank = torch.transpose(fbank, 0, 1)
    # this is just to satisfy new torchaudio version, which only accept [1, freq, time]
    fbank = fbank.unsqueeze(0)



    # squeeze it back, it is just a trick to satisfy new torchaudio version
    fbank = fbank.squeeze(0)
    fbank = torch.transpose(fbank, 0, 1)


    # normalize the input for both training and test
    if not skip_norm:
        fbank = (fbank - norm_mean) / (norm_std * 2)
    # skip normalization the input if you are trying to get the normalization stats.
    else:
        pass


    audio = fbank.unsqueeze(0)

    return audio

do_sample=False
num_beams=5
max_length=30





def inference(image, task_type):

    if task_type == 'Audio Captioning':
        text = ['']  
        text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) 
        model = MODEL
    else:
        raise NotImplemented


    image = read_audio(image)





    with torch.autocast(device_type=device_type, dtype=torch.bfloat16, enabled=True):

        out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length, 
                    do_sample=do_sample, num_beams=num_beams)


    if 'Captioning' in task_type:
        for i, o in enumerate(out):
            res = tokenizer.decode(o)
            response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
    else:
        for o in out:
            o_list = o.tolist()
            response = tokenizer.decode(o_list).split(special_answer_token)[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True

    return response


inputs = [gr.Audio(source="upload", type="filepath"),  gr.inputs.Radio(choices=['Audio Captioning'], type="value", default="Image Captioning", label="Task")]
outputs = ['text']
examples = [
    ['examples/audios/6cS0FsUM-cQ.wav', 'Audio Captioning', None],
    ['examples/audios/AJtNitYMa1I.wav', 'Audio Captioning', None],
]

title = "eP-ALM for Audio-Text tasks"
description = "Gradio Demo for eP-ALM. For this demo, we use 2.7B OPT. As the model runs on CPUs and float16 mixed precision is not supported on CPUs, the generation can take up to 2 mins."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2303.11403' target='_blank'>Paper</a> | <a href='https://github.com/mshukor/eP-ALM' target='_blank'>Github Repo</a></p>"

io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
                  title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch()